POWER FACTOR CORRECTOR

- CONTROL BOOST PWM UP TO 0.99P.F.
- LIMITLINE CURRENT DISTORTIONTO < 5%
- UNIVERSAL INPUT MAINS
- FEED FORWARD LINE AND LOAD REGULATION
- AVERAGE CURRENT MODE PWM FOR MINIMUM NOISE SENSITIVITY
- HIGH CURRENT BIPOLAR AND DMOS TOTEM POLE OUTPUT
- LOW START-UP CURRENT (0.3mA TYP.)
- UNDER VOLTAGE LOCKOUT WITH HYSTERESIS AND PROGRAMMABLE TURN ON THRESHOLD
- OVERVOLTAGE, OVERCURRENT PROTECTION
- PRECISE 2\% ON CHIP REFERENCE EXTERNALLY AVAILABLE
- SOFTSTART

DESCRIPTION

The L4981 I.C. provides the necessary features to achieve a very high power factor up to 0.99 .
Realized in BCD 60II technology this power factor corrector (PFC) pre-regulator contains all the con-

MULTIPOWER BCD TECHNOLOGY

DIP 20

SO 20

ORDERING NUMBERS: L4981X (DIP 20)
L4981XD (SO 20)
trol functions for designing a high efficiency-mode power supply with sinusoidal line current consumption.
The L4981 can be easily used in systems with mains voltages between 85 V to 265 V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in-

BLOCK DIAGRAM

put filter; both the operating frequency modes working with an average current mode PWM controller, maintaining sinusoidal line current without slope compensation.
Besides power MOSFET gate driver, precise voltage reference (externally available), error amplifier, undervoltage lockout, current sense and the
soft start are included. To limit the number of the external components, the device integrates protections as overvoltage and overcurrent. The overcurrent level can be programmed using a simple resistor for L4981A. For a better precision and for L4981B an external divider must be used.

ABSOLUTE MAXIMUM RATINGS

Symbol	Pin	Parameter		Value	Unit
Vcc	19	Supply Voltage (Icc $\leq 50 \mathrm{~mA}$) (*)		selflimit	V
Igdrv	20	Gate driv. output peak current ($\mathrm{t}=1 \mu \mathrm{~s}$)	SINK	2	A
			SOURCE	1.5	A
VGDRV		Gate driv. output voltage $\mathrm{t}=0.1 \mu \mathrm{~s}$		-1	V
		Voltages at pins 3, 14, 7, 6, 12, 15		-0.3 to 9	V
VVa-out	13	Error Amplifier Voltage		-0.3 to 8.5	V
IAC	4	AC Input Current		5	mA
		Voltages at pin 8, 9		-0.5 to 7	V
Vca-out	5	Current Amplifier Volt. (Isource $=-20 \mathrm{~mA}$; Isink $=20 \mathrm{~mA}$)		-0.3 to 8.5	V
Vrosc	17	Voltage at pin 17		-0.3 to 3	V
	11, 18	Voltage at pin 11, 18		-0.3 to 7	V
Icosc	18	Input Sink Current		15	mA
Ifreq-Mod	16	Frequency Modulation Sink Current (L4981B)		5	mA
V ${ }_{\text {SYNC }}$	16	Sync. Voltage (L4981A)		-0.3 to 7	V
VIPK	2	Voltage at pin 2 Voltage at $\operatorname{Pin} 2 \mathrm{t}=1 \mu \mathrm{~s}$		$\begin{gathered} -0.3 \text { to } 5.5 \\ -2 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Ptot		Power Dissipation at $\mathrm{Tamb}=70^{\circ} \mathrm{C} \quad$ (DIP20)		1	W
		Power Dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} \quad$ (SO20)		0.6	W
$\mathrm{T}_{\text {stg }}$		StorageTemperature		-55 to 150	${ }^{\circ} \mathrm{C}$

$\left(^{*}\right)$ Maximum package power dissipation limits must be observed.

PIN CONNECTIONS (Top views)

THERMAL DATA

Symbol	Parameter	DIP 20	SO 20	Unit
Rth j-amb	Thermal Resistance Junction-ambient	80	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

N.	Name	Description
1	P-GND	Power ground.
2	IPK	L4981A peak current limiting. A current limitation is obtained using a single resistor connected between Pin 2 and the sense resistor. To have a better precision another resistor between Pin 2 and a reference voltage (Pin 11) must be added. L4981B peak current limiting. A precise current limitation is obtained using two external resistor only. These resistors must be connected between the sense resistor, Pin 2 and the reference voltage.
3	OVP	Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage reference with a sample of the boost output voltage obtained via a resistive voltage divider in order to limit the maximum output peak voltage.
4	IAC	Input for the AC current. An input current proportional to the rectified mains voltage generates, via a multiplier, the current reference for the current amplifier.
5	CA-OUT	Current amplifier output. An external RC network determinates the loop gain.
6	LFF	Load feedforward; this voltage input pin allows to modify the multiplier output current proportionally to the load, in order to give a faster response versus load transient. The best control is obtained working between 1.5 V and 5.3 V . If this function is not used, connect this pin to the voltage reference (pin = 11).
7	VRMS	Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes. Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional to the input line RMS voltage is obtained. The best control is reached using input voltage between 1.5 V and 5.5 V . If this function is not used connect this pin to the voltage reference (pin = 11).
8	MULT-OUT	Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is an high impedence input like $I_{\text {SENSE }}$. The MULT-OUT pin must be taken not below -0.5 V .
9	IsENSE	Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5 V .
10	S-GND	Signal ground.
11	Vref	Output reference voltage (typ $=5.1 \mathrm{~V}$).Voltage refence at $\pm 2 \%$ of accuracy externally available, it's internally current limited and can deliver an output current up to 10 mA .
12	SS	A capacitor connected to ground defines the soft start time. An internal current generator delivering $100 \mu \mathrm{~A}($ typ) charges the external capacitor defining the soft start time constant. An internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO conditions.
13	VA-OUT	Error amplifier output, an RC network fixes the voltage loop gain characteristics.
14	VFEED	Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to the boost output voltage.
15	P-UVLO	Programmable under voltage lock out threshold input. A voltage divider between supply voltage and GND can be connected in order to program the turn on threshold.
16	$\begin{gathered} \hline \text { SYNC } \\ (\mathrm{L} 4981 \mathrm{~A}) \end{gathered}$	This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock pulse train is available to synchronize other devices.
	$\begin{aligned} & \text { FREQ-MOD } \\ & (\mathrm{L} 4981 \mathrm{~B}) \end{aligned}$	Frequency modulation current input. An external resistor must be connected between pin 16 and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to ground a fixed frequency imposed by Rosc and Cosc is obtained.
17	$\mathrm{R}_{\text {OSC }}$	An external resistor connected to ground fixes the constant charging current of $\mathrm{C}_{\text {OSc }}$.
18	Cosc	An external capacitor connected to GND fixes the switching frequency.
19	V_{Cc}	Supply input voltage.
20	GDRV	Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak current in excess 1A useful to drive MOSFET or IGBT power stages.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $\mathrm{Vcc}=18 \mathrm{~V}$, $\operatorname{Cosc}=1 \mathrm{nF}$,
ROSC $=24 \mathrm{~K} \Omega, \mathrm{C}_{S S}=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {CA-OUT }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {ISENSE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LFF }}=\mathrm{V}_{\text {REF }}, \mathrm{I}_{\text {AC }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {RMS }}=1 \mathrm{~V}$,
$\mathrm{V}_{\text {FEED }}=\mathrm{GND}, \mathrm{V}_{\text {IPK }}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OVP}}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Symbol	Prameter	Test Condition	Min.	Typ.	Max.	Unit
ERROR AMPLIFIER SECTION						
V_{10}	Input Offset Voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C}$			± 8	mV
$\mathrm{IIB}^{\text {I }}$	Input Bias Current	$\mathrm{V}_{\text {FEED }}=0 \mathrm{~V}$	-500	-50	500	nA
	Open Loop Gain		70	100		dB
$\mathrm{V}_{13 \mathrm{H}}$	Output High voltage	$\begin{aligned} & \mathrm{V}_{\text {FEED }}=4.7 \mathrm{~V} \\ & \text { IVA-OUT }=-0.5 \mathrm{~mA} \end{aligned}$	5.5	6.5	7.5	V
$\mathrm{V}_{13 \mathrm{~L}}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\text {FEED }}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{VA}-\mathrm{OUT}}=0.5 \mathrm{~mA} \end{aligned}$		0.4	1	V
$-l_{13}$	Output Source Current	$\mathrm{V}_{\text {FEED }}=4.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{VA} \text {-OUT }}=3.5 \mathrm{~V}$	2	10		mA
I_{13}	Output Sink Current	$\mathrm{V}_{\text {FEED }}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {VA-OUT }}=3.5 \mathrm{~V}$	4	20		mA
REFERENCE SECTION						
$\mathrm{V}_{\text {ref }}$	Reference Output Voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C}$	4.97	5.1	5.23	V
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \mathrm{I}_{\text {ref }}=0$	5.01	5.1	5.19	V
$\Delta \mathrm{V}_{\text {ref }}$	Load Regulation	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\text {ref }} \leq 10 \mathrm{~mA} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		3	15	mV
$\Delta \mathrm{V}_{\text {ref }}$	Line Regulation	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 19 \mathrm{~V} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		3	10	mV
$\mathrm{I}_{\text {ref sc }}$	Short Circuit Current	$\mathrm{V}_{\text {ref }}=0 \mathrm{~V}$	20	30	50	mA
OSCILLATOR SECTION						
$\mathrm{f}_{\text {osc }}$	Initial Accuracy	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	85	100	115	KHz
	Frequency Stability	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 19 \mathrm{~V} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<85^{\circ} \mathrm{C} \end{aligned}$	80	100	120	KHz
$\mathrm{V}_{\text {svp }}$	Ramp Valley to Peak		4.7	5	5.3	V
$\mathrm{I}_{18 \mathrm{C}}$	Charge Current	$\mathrm{V}_{\text {cosc }}=3.5 \mathrm{~V}$	0.45	0.55	0.65	mA
$\mathrm{I}_{18 \mathrm{D}}$	Discharge Current	$\mathrm{V}_{\text {cosc }}=3.5 \mathrm{~V}$		11.5		mA
V_{18}	Ramp Valley Voltage		0.9	1.15	1.4	V
SYNC SECTION (Only for L4981A)						
tw	Output Pulse Width	50\% Amplitude	0.3	0.8		$\mu \mathrm{s}$
I_{16}	Sink Current with Low Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{SYNC}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COSC}}=0 \mathrm{~V} \end{aligned}$	0.4	0.8		mA
$-l_{16}$	Source Current with High Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{SYNC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COSC}}=6.7 \mathrm{~V} \end{aligned}$	1	6		mA
$\mathrm{V}_{16 \mathrm{~L}}$	Low Input Voltage				0.9	V
$\mathrm{V}_{16 \mathrm{H}}$	High Input Voltage		3.5			V
$\mathrm{t}_{\text {d }}$	Pulse for Synchronization		800			ns
FREQUENCY MODULATION FUNCTION (Only for L4981B)						
$\mathrm{f}_{18 \text { max }}$	Maximum Oscillation Frequency	$\mathrm{V}_{\text {FREQ }- \text { MOD }}=0 \mathrm{~V}$ (Pin 16) $\mathrm{l}_{\text {freq }}=0$	85	100	115	KHz
$\mathrm{f}_{18 \text { min }}$	Minimum Oscillator Frequency	$\begin{aligned} & I_{\text {FREQ-MOD }}=360 \mu \mathrm{~A}(\text { Pin } 16) \\ & V_{\text {VRMS }}=4 \mathrm{~V}(\operatorname{Pin} 7) \end{aligned}$		74		KHz
		$\begin{aligned} & I_{\text {FREQ-MOD }}=180 \mu \mathrm{~A}(\text { Pin } 16) \\ & V_{\text {VRMS }}=2 \mathrm{~V}(\text { Pin } 7) \end{aligned}$		76		KHz
SOFT START SECTION						
ISS	Soft Start Source Current	$\mathrm{V}_{\text {SS }}=3 \mathrm{~V}$	60	100	140	$\mu \mathrm{A}$
$\mathrm{V}_{12 \text { sat }}$	Output Saturation Voltage	$\mathrm{V}_{3}=6 \mathrm{~V}, \mathrm{I}_{\text {SS }}=2 \mathrm{~mA}$		0.1	0.25	V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
SUPPLY VOLTAGE						
$\mathrm{V}_{C C}$	Operating Supply Voltage				19.5	V
OVER VOLTAGE PROTECTION COMPARATOR						
$\mathrm{V}_{\text {thr }}$	Rising Threshold Voltage		$\begin{gathered} \begin{array}{c} V_{\text {ref }} \\ -20 \mathrm{mV} \end{array} \end{gathered}$	5.1	$\begin{gathered} \mathrm{V}_{\text {ref }} \\ +20 \mathrm{mV} \\ \hline \end{gathered}$	V
$\mathrm{V}_{3 \mathrm{Hys}}$	Hysteresis		180	250	320	mV
I_{3}	Input Bias Current			0.05	1	$\mu \mathrm{A}$
t_{d}	Propagation delay to output	$\mathrm{V}_{\text {OVP }}=\mathrm{V}_{\text {thr }}+100 \mathrm{mV}$		1	2	$\mu \mathrm{s}$
OVER CURRENT PROTECTION COMPARATOR						
$\mathrm{V}_{\text {th }}$	Threshold Voltage				± 30	mV
t_{d}	Propagation delay to Output	$\mathrm{V}_{\text {OCP }}=\mathrm{V}_{\text {thr }}-0.2 \mathrm{~V}$		0.4	0.9	$\mu \mathrm{s}$
lipk	Current Source Generator	$\mathrm{V}_{\text {IPK }}=-0.1 \mathrm{~V}$ only for L4981A	65	85	105	$\mu \mathrm{A}$
IL	Leakage Current	$\mathrm{V}_{\text {IPK }}=-0.1 \mathrm{~V}$ only for L4981B			5	$\mu \mathrm{A}$
CURRENT AMPLIFIER SECTION						
$\mathrm{V}_{\text {offset }}$	Input Offset Voltage	$\mathrm{V}_{\text {MULT OUT }}=\mathrm{V}_{\text {SENSE }}=3.5 \mathrm{~V}$			± 2	mV
Igbias	Input Bias Current	$\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V}$	-500	50	500	nA
	Open Loop Gain	$1.1 \mathrm{~V} \leq \mathrm{V}_{\text {CA OUT }} \leq 6 \mathrm{~V}$	70	100		dB
SVR	Supply Voltage Rejection	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 19 \mathrm{~V} \\ & \mathrm{~V}_{\text {MULT OUT }}=3.5 \mathrm{~V} \mathrm{~V}_{\text {SENSE }}=3.5 \mathrm{~V} \\ & \hline \end{aligned}$	68	90		dB
$\mathrm{V}_{5 \mathrm{H}}$	Output High Voltage	$\mathrm{V}_{\text {MULT OUT }}=200 \mathrm{mV}$ $\mathrm{I}_{\mathrm{CA} \text { OUT }}=-0.5 \mathrm{~mA}, \mathrm{~V}_{\text {IAC }}=0 \mathrm{~V}$	6.2			V
$\mathrm{V}_{5 \mathrm{~L}}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\text {MULT OUT }}=-200 \mathrm{mV} \\ & \text { ICAOUT }=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {IAC }}=0 \mathrm{~V} \end{aligned}$			0.9	V
-1_{5}	Output Source Current	$\mathrm{V}_{\text {MULT }}$ OUT $=200 \mathrm{mV}$,	2	10		mA
15	Output Sink Current	$\mathrm{V}_{\text {IAC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CA-OUT }}=3.5 \mathrm{~V}$	2	10		mA
OUTPUT SECTION						
$\mathrm{V}_{20 \mathrm{~L}}$	Output Voltage Low	$\mathrm{I}_{\text {SINK }}=250 \mathrm{~mA}$		0.5	0.8	V
$\mathrm{V}_{20 \mathrm{H}}$	Output Voltage High	$\begin{aligned} & I_{\text {SOURCE }}=250 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	11.5	12.5		V
t_{r}	Output Voltage Rise Time	$\mathrm{C}_{\text {OUT }}=1 \mathrm{nF}$		50	150	ns
t_{f}	Output Voltage Fall Time	Cout $=1 \mathrm{nF}$		30	100	ns
$\mathrm{V}_{\text {GDRV }}$	Voltage Clamp	$I_{\text {SOURCE }}=0 \mathrm{~mA}$	13	16	19	V
TOTAL STANDBY CURRENT SECTION						
$\mathrm{l}_{19 \text { start }}$	Supply Current before start up	$V_{C C}=14 \mathrm{~V}$		0.3	0.5	mA
I_{190}	Supply Current after turn on	$\begin{aligned} & V_{\text {IAC }}=0 \mathrm{~V}, V_{\text {cosc }}=0, \\ & \text { Pin17 }=\text { Open } \end{aligned}$		8	12	mA
I_{19}	Operating Supply Current	Pin20 $=1 \mathrm{nF}$		12	16	mA
V_{Cc}	Zener Voltage	(*)	20	25	30	V
UNDER VOLTAGE LOCKOUT SECTION						
$\mathrm{V}_{\text {th }}$ ON	Turn on Threshold		14.5	15.5	16.5	V
$\mathrm{V}_{\text {th }}$ OFF	Turn off Threshold		9	10	11	V
	Programmable Turn-on Threshold	Pin 15 to $V_{c c}=220 \mathrm{~K}$ Pin15 to GND $=33 \mathrm{~K}$	10.6	12	13.4	V
LOAD FEED FORW ARD						
$\mathrm{l}_{\text {LFF }}$	Bias Current	$\mathrm{V}_{6}=1.6 \mathrm{~V}$		70	140	$\mu \mathrm{A}$
		$\mathrm{V}_{6}=5.3 \mathrm{~V}$		200	300	$\mu \mathrm{A}$
V	Input Voltage Range		1.6		5.3	V

(*) Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Prameter	Test Condition	Min.	Typ.	Max.	Unit
MULTIPLIER SECTION						
	Multipler Output Current	$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=2 \mathrm{~V}$, $V_{\text {MULTOUT }}=0, V_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=50 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	20	35	52	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=2 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=200 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	100	135	170	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{VA} \text {-OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=2 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $I_{A C}=100 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	10	20	30	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $I_{A C}=100 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	2	5.5	11	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $\mathrm{I}_{\mathrm{AC}}=100 \mu \mathrm{~A}, \mathrm{CosC}=0 \mathrm{~V}$	10	22	34	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=2 \mathrm{~V}$, $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=2.5 \mathrm{~V}$ Cosc $=0 \mathrm{~V}, \mathrm{I}_{\mathrm{AC}}=200 \mu \mathrm{~A}$	20	37	54	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {VA-OUT }}=4 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}$ $\mathrm{V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V}$ $I_{A C}=200 \mu A, C o s C=0 V$	20	39	54	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\text {VA-OUT }}=2 \mathrm{~V}, \mathrm{~V}_{\text {RMS }}=4 \mathrm{~V}, \\ & \mathrm{~V}_{\text {MULTOUT }}=0, \mathrm{~V}_{\text {LFF }}=5.1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{AC}}=0, \operatorname{CoSC}=0 \mathrm{~V} \end{aligned}$	-2	0	2	$\mu \mathrm{A}$
K	Multiplier Gain			0.37		

$I_{\text {MULT-OUT }}=K \cdot I_{\text {AC }} \frac{\left(\mathrm{V}_{\text {VA-OUT }}-1.28\right) \cdot\left(0.8 \cdot \mathrm{~V}_{\text {LFF }}-1.28\right)}{\left(\mathrm{V}_{\text {VRMS }}\right)^{2}}$
if VLFF $=$ VREF; $\quad I_{\text {MULT-OUT }}=I_{\text {AC }} \frac{\left(V_{\text {VA-OUT }}-1.28\right)}{\left(\text { VVRMS }^{2}\right.}{ }^{2} \cdot K 1$
where: $\mathrm{K} 1=1 \mathrm{~V}$

Figure 1: MULTI-OUTvs. $\mathrm{I}_{\mathrm{AC}}\left(\mathrm{V}_{\mathrm{RMS}}=1.7 \mathrm{~V}\right.$;
VLFFD $=5.1 \mathrm{~V}$)

Figure 2: MULTI-OUT vs. $\mathrm{I}_{\mathrm{AC}}\left(\mathrm{V}_{\mathrm{RMS}}=2.2 \mathrm{~V}\right.$;

$$
\text { VLFFD }=5.1 \mathrm{~V})
$$

Figure 3: MULTI-OUTvs. $\mathrm{I}_{\mathrm{AC}}(\mathrm{V}$ RMS $=4.4 \mathrm{~V}$; $\mathrm{V}_{\text {LFFD }}=5.1 \mathrm{~V}$)

Figure 5: MULTI-OUTvs. $\mathrm{I}_{\mathrm{AC}}\left(\mathrm{V}_{\mathrm{RMS}}=1.7 \mathrm{~V}\right.$; VLFFD $=2.5 \mathrm{~V}$)

Figure 7: MULTI-OUTvs. $\mathrm{I}_{\mathrm{AC}}(\mathrm{V}$ RMS $=4.4 \mathrm{~V}$; VLFFD $=2.5 \mathrm{~V}$)

Figure 4: MULTI-OUT vs. $\mathrm{I}_{\mathrm{AC}}\left(\mathrm{V}_{\mathrm{RMS}}=5.3 \mathrm{~V}\right.$;
$\mathrm{V}_{\text {LFFD }}=5.1 \mathrm{~V}$)

Figure 6: MULTI-OUT vs. $\mathrm{I}_{\mathrm{AC}}\left(\mathrm{V}_{\mathrm{RMS}}=2.2 \mathrm{~V}\right.$; $\mathrm{V}_{\text {LFFD }}=2.5 \mathrm{~V}$)

Figure 8: MULTI-OUT vs. $\mathrm{I}_{\mathrm{AC}}\left(\mathrm{V}_{\mathrm{RMS}}=5.3 \mathrm{~V}\right.$; $\mathrm{V}_{\text {LFFD }}=2.5 \mathrm{~V}$)

Figure 9A: L4981A Power Factor Corrector (200W)

PART LIST

$\mathbf{R}_{\mathbf{S}}$	$0.07(3 \times .22)$	$1 / 2 \mathrm{~W}$	5%
$\mathbf{R 1}$	$820 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 2}$	$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 3}$	$1.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 4}$	$1.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 5}$	$18 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 6}$	$1.2 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 7}$	$360 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 8}$	$33 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 9}$	$1.8 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 0}$	$21 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 1}$	402Ω	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 2}$	$120 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 1 3}$	27Ω	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 1 4}$	$1 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 5}$	$120 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	5%
$\mathbf{R 1 6}$	$30 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 1 7}$	$1.8 \mathrm{k} \Omega$	4 W	1%
$\mathbf{R 2 1}$	$5.1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
	$\mathrm{BRIDGE}=4 \times \mathrm{P} 600 \mathrm{M}$		

T= primary: 88 turns of 12×32 AWG (0.2 mm) secondary: 9 turns of \# 27AWG (0.15 mm) core: B1ET3411A THOMSON - CSF
gap: $1,6 \mathrm{~mm}$ for a total primary inductance of 0.9 mH

C1	470 nF	400 V
C2	$100 \mu \mathrm{~F}$	450 V
C3	2.2 nF	
C4	1 nF	
C5	$100 \mu \mathrm{~F}$	25 V
C6	$1 \mu \mathrm{~F}$	16 V
C7	220 nF	63 V
C8	220 nF	63 V
C9	330 nF	
C10	$1 \mu \mathrm{~F}$	16 V
C11	270 pF	400 V
C12	8.2 nF	100 V
D1	STTA506D	
D2, D3	1 N 4148	
D4	18 V	$1 / 2 \mathrm{~W}$
D5	BYT11-600	
MOS	STH/STW15NA50	
FUSE $=4 \mathrm{~A} / 250 \mathrm{~V}$		

$\mathrm{f}_{\mathrm{SW}}=80 \mathrm{kHz} \mathrm{PO}_{\mathrm{O}}=200 \mathrm{~W}$
$\mathrm{V}_{\text {OUT }}=400 \mathrm{~V} \mathrm{I}_{\text {rms }}$ max $=2.53 \mathrm{~A}$
$\mathrm{V}_{\text {OVP }}=442 \mathrm{~V} \quad \mathrm{I}_{\mathrm{PK} \max }=6.2 \mathrm{~A}$

Figure 9B: L4981B Power Factor Corrector (200W)

PART LIST

\mathbf{R}_{S}	$0.07(3 \times .22)$	$1 / 2 \mathrm{~W}$	5%
$\mathbf{R 1}$	$820 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 2}$	$10 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R} 3$	$1.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 4}$	$1.8 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 5}$	$18 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 6}$	$1.2 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R} 7$	$360 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 8}$	$33 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R} 9$	$1.8 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 0}$	$21 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 1}$	402Ω	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 2}$	$120 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 1 3}$	27Ω	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 1 4}$	$1 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 1 5}$	$120 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	5%
$\mathbf{R 1 6}$	$24 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%
$\mathbf{R 1 7}$	$1.8 \mathrm{k} \Omega$	4 W	1%
$\mathbf{R 2 1}$	$5.1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1%
$\mathbf{R 2 2}$	$1.1 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	1%
	$\mathrm{BRIDGE}=4 \times \mathrm{P} 600 \mathrm{M}$		

$\mathrm{T}=$ primary: 88 turns of $12 \times 32 \mathrm{AWG}(0.2 \mathrm{~mm})$
secondary: 9 turns of \# 27AWG (0.15 mm)
core: B1ET3411A THOMSON - CSF
gap: $1,6 \mathrm{~mm}$ for a total primary inductance of 0.9 mH

C1	470 nF	400 V
C2	$100 \mu \mathrm{~F}$	450 V
C3	2.2 nF	
C4	1.1 nF	
C5	$100 \mu \mathrm{~F}$	25 V
C6	$1 \mu \mathrm{~F}$	16 V
C7	220 nF	63 V
C8	220 nF	63 V
C9	330 nF	
C10	$1 \mu \mathrm{~F}$	16 V
C11	270 pF	400 V
C12	8.2 nF	100 V
D1	STTA506D	
D2, D3	1 N 4148	
D4	18 V	$1 / 2 \mathrm{~W}$
D5	BYT11-600	
MOS	STH/STW15NA50	
FUSE $=4 \mathrm{~A} / 250 \mathrm{~V}$		

$\mathrm{f}_{\mathrm{Sw}}=80$ to $92 \mathrm{kHz} \mathrm{Po}_{\mathrm{o}}=200 \mathrm{~W}$
Vout $=400 \mathrm{~V} I_{\text {ms max }}=2.53 \mathrm{~A}$
Vovp $=442 \mathrm{~V} \mathrm{I}_{\mathrm{PK} \text { max }}=6.2 \mathrm{~A}$

Figure 10: Reference Voltage vs. Source Reference Current

Figure 12: Reference Voltage vs. Junction Temperature

Figure 14: Gate Driver Rise and Fall Time

Figure 11: Reference Voltage vs. Supply Voltage

Figure 13: Switching Frequency vs. Junction Temperature

Figure 15: Operating Supply Current vs. Supply Voltage

Figure 16: Programmable Under Voltage Lockout Thresholds

Figure 17: Modulation Frequency Normalized in an Half Cycle of the Mains Voltage

Table 1: Programmable Under Voltage Lockout Thresholds.

$\mathbf{V}_{\mathrm{CC} \text { ON }}$	$\mathbf{V}_{\mathrm{CC} \text { OFF }}$	$\mathbf{R 2 2}$	$\mathbf{R 2 3}$
11 V	10 V	$82 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$
12 V	10.1 V	$220 \mathrm{k} \Omega$	$33 \mathrm{k} \Omega$
13 V	10.5 V	$430 \mathrm{k} \Omega$	$62 \mathrm{k} \Omega$
14 V	10.8 V	$909 \mathrm{k} \Omega$	$133 \mathrm{k} \Omega$
14.5 V	10.9 V	$1.36 \mathrm{M} \Omega$	$200 \mathrm{k} \Omega$
15 V	11 V	$2.7 \mathrm{M} \Omega$	$390 \mathrm{k} \Omega$

Figure 18: Oscillator Diagram

Figure 19: 200W Evaluation Board Circuit.

T= primary: 75 turns of litz wire 20×32 AWG (0.2 mm) secondary: 8 turns of \# 27AWG (0.15 mm)
core: B1ET3411A THOMSON - CSF
gap: 1.4 mm for a total primary inductance of 0.7 mH
$\mathrm{f}_{\mathrm{sw}}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{O}}=400 \mathrm{~V} ; \mathrm{P}_{\mathrm{O}}=200 \mathrm{~W}$

NOTE:

Start Up Circuit
Usually the Vcc capacitor (C11 in fig. 19) can be charged by a resistor drawing current from the rectified mains. In the evaluation board instead the start up circuit composed by (Q2+R19+R15+Dz) has been designed to perform a fast and effective supply in all the conditions. Once that the L4981A/B has started, the reference
voltage available at pin 6 by R20 and Q3, ensures Q2 to be turned off.

Programmable Under voltage Lockout

The PCB allows to insert a couple of resistor (R22, R23) to modify the threshold input voltage. Please refer to fig. 16 and table1.

Figure 20: P.C. Board and Component Layout of Evaluation Board Circuit (1:1 scale).

The evaluation board has been designed using: a faster not dissipative start-up circuit, a diode (D2) to speed-up the MOS start-off time and (even if a single resistor can be used) an external divider to improve the precision of the overcurrent threshold.
Further there is a possibility to change the input threshold voltage using an external divider (R23 and R22) and if an inrush current problem arises
a NTC resistor can be used.
The PFC demoboard performances has been evaluated testing the following parameters:
PF (power factor), A-THD (percentage of current total harmonic distortion), H3..H9 (percentage of current's $\mathrm{n}^{\text {th }}$ harmonic amplitude), $\Delta \mathrm{V}_{\text {o }}$ (output voltage ripple), V_{0} (output voltage), η (efficiency).
The test configuration, equipments and results are:

$\mathbf{V}_{\mathbf{i}}$	\mathbf{f}	$\mathbf{P}_{\mathbf{i}}$	$\mathbf{P F}$	$\mathbf{A}-\mathbf{T H D}$	$\mathbf{H} 3$	$\mathbf{H} 5$	$\mathbf{H} 7$	$\mathbf{H} 9$	\mathbf{V}_{O}	$\Delta \mathbf{V}_{\mathrm{O}}$	$\mathbf{P O}$	η
$\left(\mathbf{V}_{\text {rms }}\right)$	$(\mathbf{H z})$	(\mathbf{W})		$(\%)$	$(\%)$	$(\%)$	$(\%)$	$(\%)$	(\mathbf{V})	(\mathbf{V})	(\mathbf{W})	$(\%)$
88	60	222	0.999	2.94	1.98	0.61	0.55	0.70	390	8	200	90.2
110	60	220	0.999	1.79	1.40	0.40	0.31	0.28	392	8	201	91.6
132	60	218	0.999	1.71	1.16	0.40	0.35	0.31	394	8	202	92.8
180	50	217	0.999	1.88	1.52	0.65	0.40	0.34	396	8	203	93.8
220	50	217	0.997	2.25	1.68	0.83	0.57	0.48	398	8	204	94.2
260	50	216	0.995	3.30	1.84	1.30	0.39	0.73	400	8	205	95.2

EMI/RFI FILTER

The harmonic content measurement has been done using an EMI/RFI filter interposed between
the AC source and the demoboard under test, while the efficiency has been calculated without the filter contribution.

where:
$\mathrm{T} 1=1 \mathrm{mH} \quad \mathrm{C} 1=0.33 \mu \mathrm{~F}, 630 \mathrm{~V}$
$\mathrm{T} 2=27 \mathrm{mH}$
$\mathrm{C} 2=2.2 \mathrm{nF}, 630 \mathrm{~V}$

SO20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1	45° (typ.)					
D	12.6		13.0	0.496		0.510
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.300
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S	8° (max.)					

DIP20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D						0.335
E		2.54			0.100	
e		22.86			0.900	
e3						
F						0.280
I		3.3				0.130
L			1.34			
Z						

16/17

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectroniss. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGSTHOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1997 SGS-THOMSON Microelectronics - Printedin Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

