

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage

Continuous	26 V
Transient ($\tau \leq 100 \mathrm{~ms}$)	-50 V to +60 V
Reverse Polarity (continuous)	-15 V
On/Off Voltage	-0.3 V to +6.0 V
Power Dissipation	Internally Limited
Load Inductance	150 mH
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	$230^{\circ} \mathrm{C}$
\quad (Soldering, 10 seconds)	2000 V
ESD Susceptibility (Note 2)	
Operating Ratings (Note 1)	
Temperature Range ($\left.\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 26 V
Thermal Resistances:	
Junction to Case $\left(\theta_{j-\mathrm{c}}\right)$	$3^{\circ} \mathrm{C} / \mathrm{W}$
Case to Ambient $\left(\theta_{\mathrm{C}-\mathrm{a}}\right)$	$50^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, I IOUT $=150 \mathrm{~mA}$ unless otherwise indicated. Boldface limits apply over the entire operating temperature range, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, all other specifications are for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Typical	Limit	Units (Limit)
Supply Voltage Operational Survival Transient	$\mathrm{t}=1 \mathrm{~ms}, \tau=100 \mathrm{~ms},$ 1\% dutycycle		$\begin{gathered} 4.75 / 4.75 \\ 26 / \mathbf{2 6} \\ -15 /-15 \\ 60 / \mathbf{6 0} \\ -50 /-\mathbf{5 0} \end{gathered}$	$\begin{gathered} V(\operatorname{Min}) \\ \text { V (Max) } \\ V_{D C}(\operatorname{Min}) \\ V(\operatorname{Max}) \\ V(\operatorname{Min}) \end{gathered}$
Supply Current		$\begin{gathered} 20 \\ \\ 5 \\ 275 \\ 550 \\ 825 \\ \hline \end{gathered}$	$\begin{gathered} 100 / \mathbf{1 0 0} \\ \\ 10 / \mathbf{1 0} \\ 350 / \mathbf{3 5 0} \\ 700 / \mathbf{7 0 0} \\ 950 / \mathbf{9 5 0} \end{gathered}$	$\mu \mathrm{A}$ (Max) mA (Max) mA (Max) mA (Max) mA (Max)
Input to Output Voltage Drop	$\begin{aligned} & \text { IOUT }=250 \mathrm{~mA} \\ & \text { IOUT }=500 \mathrm{~mA} \\ & \text { IOUT }=750 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.50 \\ & 0.75 \\ & \hline \end{aligned}$		
Short Circuit Current		1.5	$\begin{gathered} 1.0 / 0.75 \\ 2.0 / \mathbf{2 . 0} \end{gathered}$	A (Min) A (Max)
Output Leakage Current	$\mathrm{V}_{\text {ON } / \overline{\text { OFF }}}=0.8 \mathrm{~V}$	10	50/50	$\mu \mathrm{A}$ (Max)
ON/OFF Input Threshold Voltage		1.4	$\begin{aligned} & 0.8 / \mathbf{0 . 8} \\ & 2.0 / \mathbf{2 . 0} \end{aligned}$	V (Min) V (Max)
ON/OFF Input Current	$\mathrm{V}_{\mathrm{ON} / \overline{\mathrm{OFF}}}=0.8 \mathrm{~V}$ $\mathrm{V}_{\mathrm{ON} / \mathrm{OFF}}=2.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{ON} / \overline{\mathrm{OFF}}}=5.25 \mathrm{~V}$	$\begin{gathered} 0.1 \\ 1 \\ 50 \end{gathered}$	$\begin{gathered} 5 / \mathbf{1 0} \\ 10 / \mathbf{2 0} \\ 100 / \mathbf{1 0 0} \end{gathered}$	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)
Overvoltage Shutdown Threshold		33	$\begin{aligned} & 27 / 27 \\ & 37 / 37 \end{aligned}$	V (Min) V (Max)
Inductive Clamp Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{ON} / \overline{\text { OFF }}=2 \mathrm{~V} \text { to } 0.8 \mathrm{~V},} \\ & \mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~mA} \end{aligned}$	-45	$\begin{gathered} -120 /-\mathbf{1 2 0} \\ -40 /-\mathbf{4 0} \end{gathered}$	V (Max) V (Min)
Output Turn-On Delay	$\mathrm{V}_{\text {ON/ }}$ OFF 0.8 V to 2 V	4.2	20	$\mu \mathrm{S}$
Output Turn-Off Delay	$\mathrm{V}_{\text {ON/ }}$ OFF 2 V to 0.8 V	4.5	20	$\mu \mathrm{s}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

TL/H/11237-11

Application Hints

high current output

The 750 mA output is fault protected against overvoltage. If the supply voltage rises above approximately 30 V , the output will automatically shut down. This protects the internal circuitry and enables the IC to survive higher voltage transients than would otherwise be expected. The LM1950 will survive transients and DC voltages up to 60 V on the supply. The output remains off during this time, independent of the state of the input logic voltage. This protects the load. The high current output is also protected against short circuits to either ground or supply voltage. Standard thermal shutdown circuits are employed to protect the LM1950 from over heating.

FLYBACK RESPONSE

Since the LM1950 is designed to drive inductive as well as any other type of load, inductive kickback can be expected whenever the output changes state from ON to OFF (See Waveform on Figure 1). The driver output was left unclamped since it is often desirable in many systems to achieve a very rapid decay in the load current. In applications where this is not true, such as in Figure 2, a simple external diode clamp will suffice. In this application, the integrated current in the inductive load is controlled by varying the duty cycle of the input to the drive IC. This technique achieves response characteristics that are desirable for certain automotive transmission solenoids, for example.
For applications requiring a rapid controlled decay in the solenoid current, such as fuel injector drivers, an external zener and diode can be used as in Figure 3. The voltage rating of the zener should be such that it breaks down before the output of the LM1950. The minimum output breakdown voltage of the IC output is rated at -54 V with respect to the supply voltage.

The LM1950 can be used alone as a simple relay or solenoid driver where a rapid decay of the load current is desired, but the exact rate of decay is not critical to the system. If the output is unclamped as in Figure 1, and the load is inductive enough, the negative flyback transient will cause the output of the IC to breakdown and behave similarly to a zener clamp. Relying upon the IC breakdown is practical and will not damage or degrade the IC in any way. There are two considerations that must be accounted for when the driver is operated in this mode. The IC breakdown voltage is process and lot dependent. Output clamp voltages ranging from -40 V to -120 V (with $\mathrm{V}_{\text {Cc }}$ supply of 14 V) will be encountered over time on different devices. This is not at all critical in most applications. An important consideration however, is the additional heat dissipated in the IC as a result. This must be added to normal device dissipation when considering junction temperatures and heat sinking requirements. Worst case for the additional dissipation can be approximated as:

$$
\text { Additional } P_{D}=I^{2} \times L \times f(\text { Watts })
$$

Where: $I=$ Peak Solenoid Current (Amps)
L = Solenoid Inductance (Henries)
$\mathrm{f}=$ Maximum Frequency Input Signal (Hz)
For solenoids where the inductance is less than ten millihenries, the additional power dissipation can be ignored. Overshoot, undershoot, and ringing can occur on certain loads. The simple solution is to lower the Q of the load by the addition of a resistor in parallel or series with the load. A value that draws one tenth of the current or DC voltage of the load is usually sufficient.
For frequency stability of the switch, a $0.1 \mu \mathrm{~F}$ or larger output bypass capacitor is required.

FIGURE 1

TL/H/11237-5
FIGURE 2. Diode Clamp

TL/H/11237-6
FIGURE 3. Zener Clamp for Rapid Controlled Current Decay

Physical Dimensions inches (millimeters)

Order Number LM1950T NS Package Number T05A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

