
Octal Bus Transceiver

The SN74LS245 is an Octal Bus Transmitter/Receiver designed for 8-line asynchronous 2-way data communication between data buses. Direction Input (DR) controls transmission of Data from bus A to bus <u>B</u> or bus B to bus A depending upon its logic level. The Enable input (E) can be used to isolate the buses.

- Hysteresis Inputs to Improve Noise Immunity
- 2-Way Asynchronous Data Bus Communication
- Input Diodes Limit High-Speed Termination Effects
- ESD > 3500 Volts

LOGIC AND CONNECTION DIAGRAMS DIP (TOP VIEW)

TRUTH TABLE

INPUTS		OUTPUT		
E	DIR	OUTPUT		
L	L	Bus B Data to Bus A		
L	Н	Bus A Data to Bus B		
Н	Χ	Isolation		

H = HIGH Voltage Level L = LOW Voltage Level

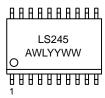
X = Immaterial

GUARANTEED OPERATING RANGES

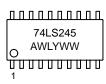
Symbol	Parameter	Min	Тур	Max	Unit
VCC	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
IОН	Output Current – High			-3.0	mA
				-15	mA
loL	Output Current – Low			24	mA

ON Semiconductor

http://onsemi.com


LOW POWER SCHOTTKY

MARKING DIAGRAMS



A = Assembly Location

WL = Wafer Lot YY = Year

WW = Work Week

ORDERING INFORMATION

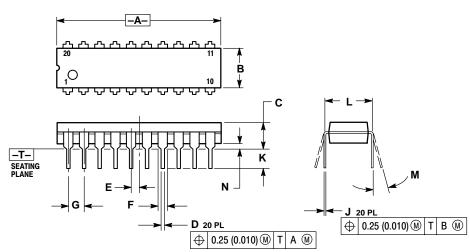
Device	Package	Shipping	
SN74LS245N	PDIP-20	1440 Units/Box	
SN74LS245DW	SOIC-WIDE	38 Units/Rail	
SN74LS245DWR2	SOIC-WIDE	2500/Tape & Reel	
SN74LS245M	SOEIAJ-20	See Note 1.	
SN74LS245MEL	SOEIAJ-20	See Note 1.	

 For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Те	st Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage				0.8	V	Guaranteed In All Inputs	put LOW Voltage for
$V_{T+}-V_{T-}$	Hysteresis		0.2	0.4		V	V _{CC} = MIN	
VIK	Input Clamp Diode Vol	tage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
\/-··	Output HICH Voltage		2.4	3.4		V	$V_{CC} = MIN, I_{OH} = -3.0 \text{ mA}$	
VOH	Output HIGH Voltage		2.0			V	V _{CC} = MIN, I _{OH} = MAX	
				0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
VOL	Output LOW Voltage			0.35	0.5	V	I _{OL} = 24 mA	VIN = VIL or VIH per Truth Table
lozh	Output Off Current HIC	SH			20	μΑ	V _{CC} = MAX, \	/ _{OUT} = 2.7 V
lozL	Output Off Current LO	W			-200	μΑ	V _{CC} = MAX, \	/ _{OUT} = 0.4 V
		A or B, DR or E			20	μΑ	V _{CC} = MAX, \	/ _{IN} = 2.7 V
lН	Input HIGH Current	DR or E			0.1	mA	V _{CC} = MAX, \	/ _{IN} = 7.0 V
		A or B			0.1	mA	V _{CC} = MAX, V _{IN} = 5.5 V	
I _{IL}	Input LOW Current				-0.2	mA	V _{CC} = MAX, \	/ _{IN} = 0.4 V
los	Output Short Circuit Current (Note 2.)		-40		-225	mA	VCC = MAX	
	Power Supply Current Total, Output HIGH				70		V _{CC} = MAX	
ICC	Total, Output LOW	Total, Output LOW			90	mA		
	Total at HIGH Z				95			

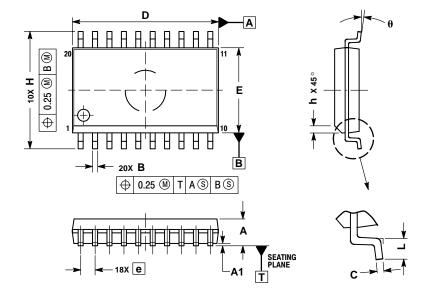
^{2.} Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$, $T_{RISE}/T_{FALL} \le 6.0 \text{ ns}$)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
^t PLH ^t PHL	Propagation Delay, Data to Output		8.0 8.0	12 12	ns	C _L = 45 pF,	
^t PZH	Output Enable Time to HIGH Level		25	40	ns	$R_L = 667 \Omega$	
^t PZL	Output Enable Time to LOW Level		27	40	ns		
^t PLZ	Output Disable Time from LOW Level		15	25	ns	C _L = 5.0 pF,	
^t PHZ	Output Disable Time from HIGH Level		15	25	ns	$C_L = 5.0 \text{ pF},$ $R_L = 667 \Omega$	

PACKAGE DIMENSIONS

N SUFFIX


PLASTIC PACKAGE CASE 738-03 ISSUE E

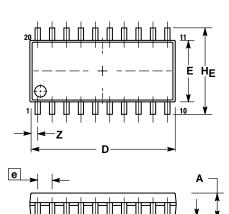
- IOLES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD
- FLASH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.022	0.39	0.55	
Е	0.050	BSC	1.27 BSC		
F	0.050	0.070	1.27	1.77	
G	0.100	BSC	2.54 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.140	2.80	3.55	
L	0.300 BSC		7.62	BSC	
M	0 °	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

D SUFFIX PLASTIC SOIC PACKAGE CASE 751D-05 ISSUE F

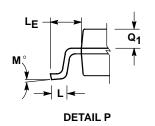
- NOTES:

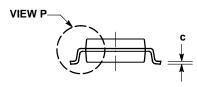
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- PROTRUSION.


 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	12.65	12.95		
Е	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
A	n o	70		

PACKAGE DIMENSIONS


M SUFFIX


SOEIAJ PACKAGE CASE 967-01 **ISSUE O**

0.10 (0.004)

0.13 (0.005) M

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE, MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT, MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
Α ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
C	0.18	0.27	0.007	0.011	
D	12.35	12.80	0.486	0.504	
Е	5.10	5.45	0.201	0.215	
е	1.27 BSC		0.050 BSC		
ΗE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LF	1.10	1.50	0.043	0.059	
M	0 °	10°	0 °	10°	
Q ₁	0.70	0.90	0.028	0.035	
Z		0.81		0.032	

ON Semiconductor and War are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.