Instruments Advanced Product Information

Texas

SN 76115N

Stereo Demodulator

RES

004095

ORIG

TJ

FEATURING

***** REQUIRES NO INDUCTORS

* LOW EXTERNAL PART COUNT

- ONLY OSCILLATOR FREQUENCY ADJUSTMENT NECESSARY
- INTEGRAL STEREO/MONAURAL SWITCH
 75 mA LAMP DRIVING CAPABILITY
- WIDE DYNAMIC RANGE:
 560 mV (RMS) MAXIMUM COMPOSITE INPUT SIGNAL

96

4095

- * WIDE SUPPLY RANGE: 8-16 Vdc
- * EXCELLENT CHANNEL SEPARATION MAINTAINED OVER ENTIRE AUDIO FREQUENCY RANGE
- LOW DISTORTION: TYPICALLY 0.3 THD AT 560 mV (RMS) COMPOSITE INPUT SIGNAL
- ***** EXCELLENT SCA REJECTION

MAXIMUM RATINGS	(T_A)		425°C unless	otherwise	noted))
-----------------	---------	--	--------------	-----------	--------	---

RATING	VALUE	UNIT
Power Supply Voltage	16	Volts
Lamp Current (Nominal Rating 12V Lamp)	75	mA
Power Dissipation (Package Limitation) Derate above TA = +25°C	625 5.0	mW mW/°C
Operating Temperature Range (Ambient)	-30to+85	°C
Storage Temperature Range	-65to+150	°C

PIN FUNCTIONING

Pin 1 = V_{CC} Pin 2 = Input Pin 3 = Amplifier Output Pin 4 = Left Channel Output Pin 5 = Right Channel Output Pin 6 = Lamp Indicator Pin 7 = Ground

- Pin 8 = Switch Filter Pin ° = Switch Filter Pin 10 = 19 kHz Output Pin 11 = Modulator Input Pin 12 = Loop Filter Pin 13 = Loop Filter
- Pin 14 = Oscillator RC Network

Z

_

ELECTRICAL CHARACTERISTICS Unless otherwise noted, $V_{CC}^* = 12$ Vdc, $A = +25^{\circ}c$, 560 mV(RMS) (2.8 Vp-p) standard multiplex composite signal with L or R channel only modulated at 1.0kHz and with 100 mV(RMS) (10%) pilot level, using circuit of Figure 1.

	Min	Тур	Max	Unit	8:
Maximum Standard Composit Input Signal (0.5% THD)	2.8	-	-	V p-p	
Input Impedance	- '	50	39 E	k	
Maximum Monaural Input Signal (1.0% THD)	2.8		-	Vp-p	
Stereo Channel Separation (50 Hz - 15kHz)	30	40	-	đB	
Audio Output Voltage (desired channel)	-	485	-	mV (RMS)	
Monaural Channel Balance (pilot tone 'off)	-		1.5	dB	
Total Harmonic Distortion	-	0.3	-	8	
Tltrasonic Frequency Rejection 19kHz 38kHz	-	34.4 45	-	đB	
Inherent SC A Rejection (f = 67 kHz;9.0 kHz beat note measured with 1.0 kHz modulation 'off)	_	80		dB	
Stereo	12	16	20	mV (RMS)	
(19 kHz input level for lamp on) Hysteresis	/	6.0		dB	ļ
Capture Range (permissable tuning error of internal oscillator, reference circuit values of Figure 1)	-	<u>+</u> 3.0	-	8	
Operation Supply Voltage (loads reduced to 2.7k for 8.0 volt operation)	8.0	-	16	Vdc	
Current Drain (lamp 'off')		13	- 	mAdc	

2 115 3

FIGURE 2 SYSTEM BLOCK DIAGRAM

511.8

CIRCUIT OPERATION

4. li š

Figure 2, on the previous page, shows the system block diagram. The upper line, comprising the 38-kHz regeneration loop operates as follows:

The internal oscillator running at 76kHz and feeding through two divider stages returns a 19 kHz signal to the input modulator. There the returned signal is multiplied with the incoming signal so that when a 19kHz pilot tone is received a dc component is extracted by the low pass filter and used to control the frequency of the internal oscillator which consequently becomes phase- locked to the pilot tone. With the oscillator phase locked to the pilot the 38kHz output from the first divider is in the correct phase for decoding a stereo signal. The decoder is essentially another modulator in which the incoming signal is multiplied by the regenerated 38-kHz signal. The regenerated 38kHz signal is fed to the stereo decoder via an internal stereo The stereo switch closes when a sufficiently large 19kHz switch. pilot tone is received. The pilot tone level is detected and the switch operated by the stereo switch section of the circuit in the following manner :

The 19kHz signal returned to the 38kHz regeneration loop modulator is in quadrature with the 19kHz pilot tone when the loop is locked. With a third divider state appropriately connected, a 19 kHz signal in phase with the pilot tone is generated. This is multiplied with the incoming signal in the stereo switch modulator yielding a dc component proportional to the pilot tone amplitude. This component after filtering is applied to the trigger circuit which activates both the sterec switch and an indicator lamp.

APPLICATIONS INFORMATION

115

) (Component numbers refer to Figure 1)

EXTERNAL COMPONENT FUNCTIONS AND VALUES

 C_1 Input coupling capacitor- 1.0 uF is recommended but a lower value is permissible if reduced separation at low frequencies is acceptable.

 $\frac{R_1, R_2, C_2, C_3}{10$ Loads and de-emphasis capacitors, maximum permissible load resistors are related to minimum supply voltage as follows:

> Min Supply 8.0 10 12 volts Max Load 2.7 4.5 6.2 kilohoms (+ 10% Tolerance)

 C_4 Filter capacitor for stereo switch level detector-time constant is C4 x 53 kilohms ± 30% maximum dc voltage appearing across C_4 is 0.25 V (pin 8 positive) at 100mV(RMS) pilot level. The signal voltage across C4 is negligible.

 C_5 Internal coupling capacitor to modulators 0.05 uF is recommended. This gives 1.75° phase lead at 19Hz.

R₃,C₆,C₈ Phase lock loop filter components- the following network is recommended :

When less performance is required a simpler network consisting of $R_3 = 100$ ohms and $C_6 = 0.25$ uF may be used (omit C8).

R₄, R₅, C₇ Oscillator timing network, recommended values :

 $C_7 = 470 \text{ pF}$ 18 $R_4 = 16k$ 18 $R_5 = 5k$ Preset

These values give ± 3 % typical capture range. Capture range may be increased by reducing C₇ and increasing R₄, R₅ proportionally but at the cost of increased beat-note distortion (due to oscillator phase jitter) at high-signal levels.

Stereo Lamp Nominal rating up to 75mA at 12v- the circuit includes surge limiting which restricts cold-lamp current to approximately 250mA.

<u>19kHz-Output</u> A buffered output providing a 3.0Vpg positive-going square wave at 19kHz is available at pin 10. A frequency counter may be connected to this point to measure the oscillator freerunning frequency for alignment.

External Monaural/Stereo Switching The circuit can be maintained in monaural mode by connecting pin 8 negative or pin 9 positive by 0.3V. Pin 8 may be grounded directly if desired. The dc impedance at pins 8 and 9 is 28 kilohms ± 30 %. Note that the voltage across C₄ increases to 2.2V with pin 9 positive when pin 8 is grounded.

Oscillator Killing In AM-FM receivers it may be desirable to kill the 76-kHz internal oscillator during AM reception to prevent interference. This may be accomplished by either grounding pin 14 or by connecting it to the positive line via a current limiting resistor (3.3 kilohms is recommended)

<u>Phase Compensation</u> Phase-shifts in the circuit cause the regenerated 38kHz sub-carrier to lead the original 38kHz by approximately 2°. The coupling capacitor C_5 generates an additional lead of 3.5° (for $C_5 = 0.05$ uF) giving a total lead of 5.5° .

It may be desirable that the regenerated 38kHz lead or lag the original to compensate for receiver IF characteristics. Further phase lead can be obtained if required by reducing C_5 , which couples into a 5.0 kilohm load.

The circuit is so designed that phase lag may be generated by adding a capacitor from pin 3 to ground. The source resistance at this point is 500 ohms. A capacitance of 820 pF compensates the 5.5° phase lead : increase above this value causes the regenerated sub carrier to lag the original. Note that these phase shifts occur within the phase lock loop and

7 8115

affect only the regenerated 38kHz sub carrier: the circuit causes no significant phase or amplitude variation in the actual stereo signal prior to decoding.

Voltage Control Oscillator Compensation Figure 3 illustrates uncompensated Oscillator Drift versus temperature. The recommended T_C of the R_4 , R_5 , C_7 combination is -200ppm. This will hold the oscillator drift to approximately +0.5% over a temperature range of -30 to +85°c. Acceptable performance is obtained with up to 2.5% oscillator detuning, which with the compensation given above, allows ±2% for aging of the timing components.

FIGURE 3

.

-. 1