INTEGRATED CIRCUITS

Product specification Supersedes data of 1998 Sep 03 File under Integrated Circuits, IC02 2001 Jul 11

Full bridge current driven vertical deflection output circuit in LVDMOS

FEATURES

- · Few external components required
- High efficiency fully DC-coupled vertical output bridge circuit
- · Vertical flyback switch with short fall and rise times
- Built-in guard circuit
- Thermal protection circuit
- Improved EMC performance due to differential inputs
- A guard signal in zoom mode.

GENERAL DESCRIPTION

The TDA8354Q is a power circuit for use in 90° and 110° colour deflection systems for 25 to 200 Hz field frequencies, and for 4 : 3 and 16 : 9 picture tubes. The IC contains a vertical deflection output circuit, operating as a high efficiency class G system. The full bridge output circuit allows DC coupling of the deflection coil in combination with single positive supply voltages.

The IC is constructed in a Low Voltage DMOS (LVDMOS) process that combines bipolar, CMOS and DMOS devices. DMOS transistors are used in the output stage because of the absence of second breakdown.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
DC supply								
V _P	supply voltage		7.5	12	18	V		
V _{flb}	flyback supply voltage		$2 \times V_P$	45	68	V		
I _{q(av)}	average quiescent supply current	during scan	-	10	15	mA		
I _{Vflb(av)}	average flyback supply current	during scan	_	-	10	mA		
Vertical circ	uit							
I _{o(p-p)}	output current (peak-to-peak value)		-	-	3.2	А		
I _{i(diff)(p-p)}	input current (peak-to-peak value) at pin 11 or 12		-	500	600	μA		
Flyback switch								
I _{o(Vflb)}	peak output current	t ≤ 1.5 ms	-	-	±1.6	А		
Thermal data (in accordance with IEC 60747-1)								
T _{stg}	storage temperature		-55	-	+150	°C		
T _{amb}	ambient temperature		-25	-	+85	°C		
T _{vj}	virtual junction temperature		-	-	150	°C		

ORDERING INFORMATION

TYPE NUMBER		PACKAGE				
	NAME	DESCRIPTION	VERSION			
TDA8354Q	DBS13P	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	SOT141-6			

BLOCK DIAGRAM

TDA8354Q

Full bridge current driven vertical deflection output circuit in LVDMOS

PINNING

SYMBOL	PIN	DESCRIPTION
V _{o(guard)}	1	guard output voltage
V _{i(M)}	2	input measuring resistor
V _{i(con)}	3	input conversion resistor
V _{P(B)}	4	supply voltage B
V _{o(B)}	5	output voltage B
GNDB	6	ground B
V _{flb}	7	flyback supply voltage
GNDA	8	ground A
V _{o(A)}	9	output voltage A
V _{P(A)}	10	supply voltage A
l _{i(neg)}	11	input power stage (negative); includes I _{i(sb)} signal bias
I _{i(pos)}	12	input power stage (positive); includes l _{i(sb)} signal bias
I _{i(comp)}	13	input for damping resistor compensation current

FUNCTIONAL DESCRIPTION

Vertical output stage

The vertical driver circuit has a bridge configuration, with the deflection coil connected between the complimentary driven output amplifiers. The differential input circuit is current driven, and is specially designed for direct connection to driver circuits delivering a differential current signal. However, it is also suitable for single-ended input signals.

The current to voltage conversion is done by the external resistor (R_{con}) connected between the output of the input conversion stage and output stage B. This voltage is compared with the output current through the deflection coil, measured as a voltage across R_M , which provides internal feedback information. The relationship between the differential input current and the output current is defined by:

$2 \times I_{i(diff)} \times R_{con} = I_{coil} \times R_M$

The output current is determined by the value of R_{con} and should measure 0.5 to 3.2 A (peak-to-peak value). The allowable input current range is 50 to 800 μA for each input.

Flyback supply

The flyback voltage is determined by an additional supply voltage V_{flb}. The principle of operating with two supply voltages (class G) makes it possible to optimize the supply voltage V_P for the scan voltage and optimize the second supply voltage V_{flb} for the flyback voltage. Using this method, very high efficiency is achieved. The supply voltage V_{flb} is almost totally available as flyback voltage across the coil, because of the absence of a coupling capacitor (which is not necessary as a result of the bridge configuration). The very short rise and fall times of the flyback switch are >400 V/µs.

Protection

The output circuit has protection circuits for:

- Too high die temperature
- Overvoltage of output stage A.

Full bridge current driven vertical deflection output circuit in LVDMOS

Guard circuit

A guard circuit with output signal V_{o(guard)} is provided.

The guard circuit generates an active HIGH level during the flyback period. The guard circuit is also activated for one or more of the following conditions:

- When the thermal protection is activated ($T_i \approx 170 \ ^\circ C$)
- During short circuit of the output pins (pins 5 and 9) to V_P or ground
- During open coil
- During open loop
- During short circuit of the input pins to VP or ground.

An active HIGH level of the guard signal is also generated for the following conditions:

- · No drive signal
- Short circuit of the coil.

However, for these events, the signal is generated via an internal timer circuit. The guard signal set via this timer has a delay of \approx 120 ms. The delay time is given by the lowest applicable field frequency.

The guard signal can be used to blank the picture tube screen and signal a fault condition. The guard signal can also be used as a vertical synchronisation input pulse for an On Screen Display (OSD) microcontroller.

Damping resistor compensation

For HF loop stability, a damping resistor is connected across the deflection coil. There is a large difference in current in the damping resistor R_p during scan and flyback. The resistor current is summed to the current in the deflection coil via the measuring resistor R_M , which results in a too low current in the deflection coil at the start of the scan.

To reach a short settling time, the difference in the current during scan and flyback in the damping resistor can be compensated by external means. For this purpose, a resistor (R_{comp}) of about 1 M Ω can be connected between the output of output stage A (pin 9) and pin 13 (I_{comp}).

For a more accurate calculation of R_{comp}, we have:

$$\mathsf{R}_{\mathsf{comp}} = \frac{(\mathsf{V}_{\mathsf{flb}} - \mathsf{V}_{\mathsf{loss}} - \mathsf{V}_{\mathsf{P}}) \times \mathsf{R}_{\mathsf{p}} \times \mathsf{R}_{\mathsf{con}}}{(\mathsf{V}_{\mathsf{flb}} - \mathsf{V}_{\mathsf{loss}} - \mathsf{I}_{\mathsf{L}} \times \mathsf{R}_{\mathsf{L}}) \times \mathsf{R}_{\mathsf{M}}}$$

TDA8354Q

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT		
DC supplies							
V _P	supply voltage		_	18	V		
V _{flb}	flyback supply voltage		_	68	V		
Vertical circ	uit						
I _{o(p-p)}	output current (peak-to-peak value)		_	3.2	А		
V _{o(A)}	output voltage	note 1	-	68	V		
V _{o(B)}	output voltage		-	V _P	V		
I _{1,2,3,11,12,13}	current in or out of pins 1 to 3 and 11 to 13		-20	+20	mA		
V _{1,2,3,11,12,13}	peak voltage on pins 1 to 3 and 11 to 13		-0.5	VP	V		
Flyback swit	ch						
I _{o(Vflb)}	peak output current	t ≤ 1.5 ms	_	±1.6	А		
Thermal data	a (in accordance with IEC 60747-1)						
T _{stg}	storage temperature		-55	+150	°C		
T _{amb}	operating ambient temperature		-25	+85	°C		
Τ _{vj}	virtual junction temperature	note 2	-	150	°C		
Miscellaneous							
t _{sc}	short-circuiting time	note 3	_	1	hr		
I _{i/o}	current into any pin	$1.5 \times V_P$ (ABSmax); note 4	-	+200	mA		
	current out of any pin	$-1.5 \times V_P$ (ABSmax); note 4	-200	-	mA		
V _{ESD}	electrostatic handling machine model	note 5	_	±300	V		
	electrostatic handling human body model	note 6	-	±2000	V		

Notes

1. When the pin voltage exceeds 70 V, the device functions as a power Zener diode, and limits the voltage.

- 2. Internally limited by thermal protection; switching point \approx 170 °C.
- 3. Up to $V_P = 18 V$.
- 4. Latch-up test at $T_{j(max)}$.
- 5. Machine model: equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.
- 6. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-c)}	thermal resistance from junction to case		4	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	40	K/W

TDA8354Q

CHARACTERISTICS

 V_P = 12 V; V_{flb} = 45 V; f_i = 50 Hz; $I_{i(bias)}$ = 330 μ A; T_{amb} = 25 °C; measured in test circuit of Fig.3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC supplies	5				•	
VP	operating supply voltage		7.5	-	18	V
V _{flb}	flyback supply voltage		$2 \times V_P$	-	68	V
I _{q(av)}	average quiescent supply current	during scan	_	10	15	mA
lq	quiescent supply current	no signal; no load	_	60	80	mA
I _{Vflb(av)}	average flyback supply current	during scan	-	-	10	mA
Output stag	es A and B					-
V _{loss}	total voltage loss from pin 10 to 9 and from pin 5 to 6	I _o = +1.6 A; note 1	-	_	6.0	V
	total voltage loss from pin 4 to 5 and from pin 9 to 8	I _o = -1.6 A; note 1	-	-	4.8	V
	total voltage loss from pin 10 to 9 and from pin 5 to 6	I _o = +1.1 A; note 1	-	-	4.2	V
	total voltage loss from pin 4 to 5 and from pin 9 to 8	I _o = -1.1 A; note 1	_	-	3.4	V
LE	linearity error					
	adjacent blocks	I _o = 3.2 A (p-p); note 2	-	0.5	2	%
	not adjacent blocks	I _o = 3.2 A (p-p); note 2	-	0.5	3	%
Vo	output voltage swing (flyback) $V_{o(A)} - V_{o(B)}$	$I_{i(diff)} = 0.3 \text{ mA};$ $I_{o} = -1.6 \text{ A}$	-	46	_	V
V _{offset}	offset voltage across R _M	$I_{i(diff)} = 0$				
		$I_{i(bias)} = 500 \ \mu A$	-	-	15	mV
		$I_{i(bias)} = 100 \ \mu A$	-	-	13	mV
$\Delta V_{offset(T)}$	offset voltage as a function of temperature	$I_{i(diff)} = 0$	—	-	40	μV/K
$V_{o(A)}, V_{o(B)}$	DC output voltage	I _{i(diff)} = 0; note 3	_	V _P /2	-	V
G _{v(ol)}	open-loop voltage gain $V_{9 to 5}/V_{3 to 5}$	notes 4 and 5	_	60	_	dB
$V_{3 to 5} / V_{2 to 5}$	voltage ratio $V_{3 to 5}/V_{2 to 5}$	note 4	_	0	-	dB
f _{res}	frequency response (-3 dB)	open loop	_	1	-	kHz
G _i	current gain (I _o /I _{i(diff)})		_	8000	_	
$\Delta G_c T$	current gain drift as a function of temperature		_	-	10 ⁻⁴	/K
PSRR	power supply rejection ratio	note 6	80	90	-	dB
Input stage						
I _{i(sb)}	signal bias current		-	330	500	μA
I _{i(diff)(p-p)}	differential mode input current (peak-to-peak value) pin 11 or 12	note 7	-	500	600	μA
V _{i(diff)}	differential mode input voltage	I _{i(diff)} = 500 μA	-	0.75	-	V
V _{i(cm)}	common mode input voltage	I _{i(bias)} = 330 μA	0.95	1.15	1.35	V

TDA8354Q

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Flyback swi	tch		•		•	
I _{flb}	output peak current	t < 1.5 ms	-	-	±1.6	А
V _{loss}	voltage loss (V _{flb} – V _{o(A)})					
		I _o = 1.6 A	-	8	9	V
		I _o = 1.1 A	-	7.5	8.5	V
Guard circu	it					
I _{o(guard)}	output current	not active;	_	-	10	μA
		V _{o(guard)} = 0 V				
		active; V _{o(guard)} = 4.5 V	1	-	2.5	mA
V _{o(guard)}	output voltage on pin 1	I _{o(guard)} = 100 μA	5	6	7	V
	allowable voltage on pin 1	maximum leakage	-	-	18	V
		current = 10 μA				

Notes

- 1. At $T_i = 125$ °C, the temperature coefficient of the V_{loss} has a positive sign.
- 2. The linearity error is measured for a linear input signal without S correction and is based on the 'on screen' measurement principle. This method is defined as follows. The output signal is divided into 22 successive equal time parts. The 1st and 22nd parts are ignored. The remaining 20 parts form 10 successive blocks k, where a block consists of two successive parts. The voltage amplitudes are measured across RM, starting at k = 1 and ending at k = 10, where V_k and V_{k+1} are the measured voltages of two successive blocks. V_{min}, V_{max} and V_{av} are the minimum, maximum and average voltages respectively. The linearity errors are defined as:

$$LE = \frac{V_k - V_{k+1}}{V_{av}} \times 100\% \text{ (adjacent blocks) and } LE = \frac{V_{max} - V_{min}}{V_{av}} \times 100\% \text{ (non-adjacent blocks).}$$

- 3. $V_{o(A)} + V_{o(B)} = V_P$. At the start of the scan, this equation is one diode voltage less.
- 4. The V value within formulae relates to voltages at or between relative pin numbers, i.e. V_{9 to 5}/V_{3 to 5} = voltage value across pins 9 and 5, divided by voltage value across pins 3 and 5.
- 5. $V_{2 to 5}$ AC short circuited.
- 6. At $V_{ripple} = 500 \text{ mV}_{eff}$ at V_P ; measured across R_M ; $f_{ripple} = 50 \text{ Hz}$ to 1 kHz.
- 7. $I_{i(abs)(max)} = 800 \ \mu A$ and $I_{i(abs)(min)} = 50 \ \mu A$ per pin.

Full bridge current driven vertical deflection output circuit in LVDMOS

INTERNAL CIRCUITS

 Table 1
 Equivalent pin circuits

TDA8354Q

PIN	SYMBOL	EQUIVALENT CIRCUIT
7	V _{flb}	
8	GNDA	
9	V _{o(A)}	
10	V _{P(A)}	
11	l _{i(neg)}	300 Ω (1) MGL470
12	l _{i(pos)}	300 Ω (12) (12) (12) (12) (12) (12) (12) (12)
13	l _{i(comp)}	300 Ω (13) MGL468

TDA8354Q

TEST AND APPLICATION INFORMATION

Full bridge current driven vertical deflection output circuit in LVDMOS

Full bridge current driven vertical deflection output circuit in LVDMOS

PACKAGE OUTLINE

SOLDERING

Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joints for more than 5 seconds.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg(max)}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

Suitability of through-hole mount IC packages for dipping and wave soldering methods

DACKAGE	SOLDERING METHOD		
FACKAGE	DIPPING	WAVE	
DBS, DIP, HDIP, SDIP, SIL	suitable	suitable ⁽¹⁾	

Note

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

TDA8354Q

TDA8354Q

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Tel. +31 40 27 82785, Fax. +31 40 27 88399 Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex, Tel. +33 1 4728 6600, Fax. +33 1 4728 6638 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A, Tel: +36 1 382 1700, Fax: +36 1 382 1800 India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division. Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838. Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 2001

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753504/02/pp16

Date of release: 2001 Jul 11

Document order number: 9397 750 08034

SCA72

Let's make things better.

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553

Internet: http://www.semiconductors.philips.com