
- 1.5 A RMS
- Glass Passivated Wafer
- 400 V to 600 V Off-State Voltage
- Max I<sub>GT</sub> of 10 mA
- Package Options

| PACKAGE             | PACKING       | PART # SUFFIX |  |  |
|---------------------|---------------|---------------|--|--|
| LP                  | Bulk          | (None)        |  |  |
| LP with fomed leads | Tape and Reel | R             |  |  |



MDC2AA

LP PACKAGE WITH FORMED LEADS (TOP VIEW)



MDC2AB

#### absolute maximum ratings over operating case temperature (unless otherwise noted)

| RATING                                                                           |                      |                  | VALUE       | UNIT |  |
|----------------------------------------------------------------------------------|----------------------|------------------|-------------|------|--|
| Repetitive peak off-state voltage (see Note 1)                                   | TICP206D<br>TICP206M | V <sub>DRM</sub> | 400<br>600  | V    |  |
| Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2) |                      |                  | 1.5         | А    |  |
| Peak on-state surge current full-sine-wave (see Note 3)                          |                      |                  | 10          | А    |  |
| Peak on-state surge current half-sine-wave (see Note 4)                          |                      |                  | 12          | А    |  |
| Peak gate current                                                                |                      |                  | ±0.2        | А    |  |
| Average gate power dissipation at (or below) 85°C case temperature (see Note 5)  |                      |                  | 0.3         | W    |  |
| Operating case temperature range                                                 |                      |                  | -40 to +110 | °C   |  |
| Storage temperature range                                                        |                      |                  | -40 to +125 | °C   |  |
| Lead temperature 1.6 mm from case for 10 seconds                                 |                      |                  | 230         | °C   |  |

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

 This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 60 mA/°C.

3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.

- 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 5. This value applies for a maximum averaging time of 20 ms.

#### electrical characteristics at 25°C case temperature (unless otherwise noted)

| PARAMETER        |                                       | TEST CONDITIONS                |                     |                           | MIN | ТҮР | МАХ  | UNIT |
|------------------|---------------------------------------|--------------------------------|---------------------|---------------------------|-----|-----|------|------|
| I <sub>DRM</sub> | Repetitive peak off-<br>state current | $V_D$ = rated $V_{DRM}$        | $I_{\rm G}=0$       |                           |     |     | ±20  | μΑ   |
| I <sub>GTM</sub> |                                       | V <sub>supply</sub> = +12 V†   | $R_L = 10 \Omega$   | t <sub>p(g)</sub> > 20 μs |     |     | 8    | mA   |
|                  | Peak gate trigger                     | $V_{supply} = +12 V^{\dagger}$ | $R_L = 10 \ \Omega$ | t <sub>p(g)</sub> > 20 μs |     |     | -8   |      |
|                  | current                               | $V_{supply} = -12 V^{\dagger}$ | $R_L = 10 \ \Omega$ | t <sub>p(g)</sub> > 20 μs |     |     | -8   |      |
|                  |                                       | $V_{supply} = -12 V^{\dagger}$ | $R_L = 10 \ \Omega$ | t <sub>p(g)</sub> > 20 μs |     |     | 10   |      |
| V <sub>GTM</sub> |                                       | $V_{supply} = +12 V^{\dagger}$ | $R_L = 10 \Omega$   | t <sub>p(g)</sub> > 20 μs |     |     | 2.5  | v    |
|                  | Peak gate trigger                     | V <sub>supply</sub> = +12 V†   | $R_L = 10 \Omega$   | t <sub>p(g)</sub> > 20 μs |     |     | -2.5 |      |
|                  | voltage                               | $V_{supply} = -12 V^{\dagger}$ | $R_L = 10 \ \Omega$ | t <sub>p(g)</sub> > 20 μs |     |     | -2.5 |      |
|                  |                                       | $V_{supply} = -12 V^{\dagger}$ | $R_L = 10 \ \Omega$ | t <sub>p(g)</sub> > 20 μs |     |     | 2.5  |      |

† All voltages are with respect to Main Terminal 1.

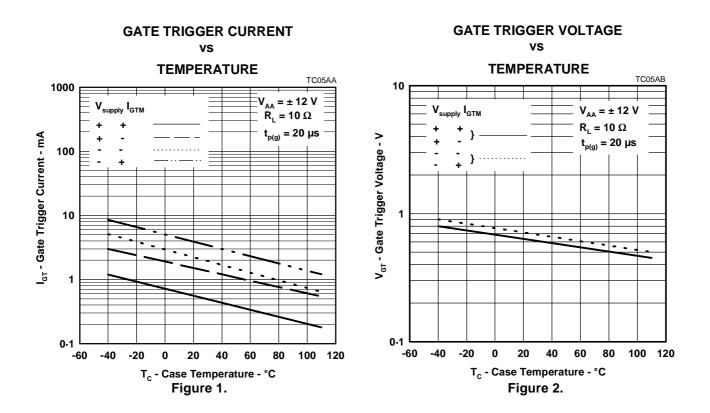
### PRODUCT INFORMATION

Information is current as of publication date. Products conform to specifications in accordance with the terms of Power Innovations standard warranty. Production processing does not necessarily include testing of all parameters.

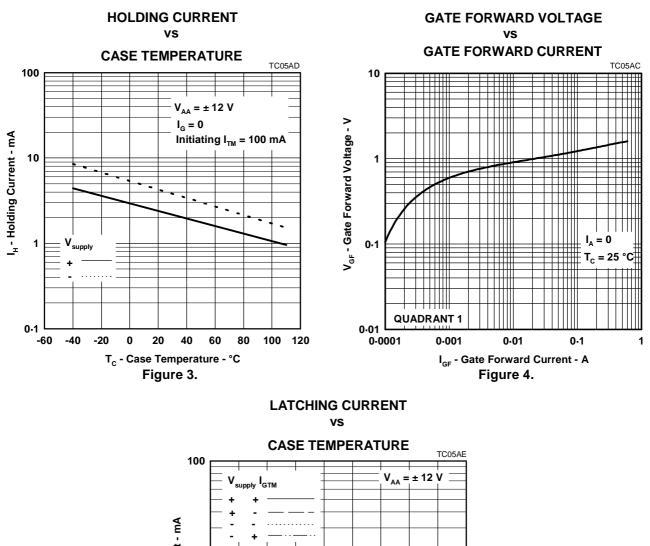


#### MARCH 1988 - REVISED MARCH 1997

#### electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)


| PARAMETER TEST CONDITIONS |                          |                                                              | ONS                     | MIN                                                               | ТҮР | МАХ | UNIT      |    |
|---------------------------|--------------------------|--------------------------------------------------------------|-------------------------|-------------------------------------------------------------------|-----|-----|-----------|----|
| V <sub>TM</sub>           | Peak on-state<br>voltage | $I_{TM} = \pm 1 A$                                           | I <sub>G</sub> = 50 mA  | (see Note 6)                                                      |     |     | ±2.2      | V  |
| Ι <sub>Η</sub>            | Holding current          | $V_{supply} = +12 V^{+}$<br>$V_{supply} = -12 V^{+}$         | $I_{G} = 0$ $I_{G} = 0$ | Init' I <sub>TM</sub> = 100 mA<br>Init' I <sub>TM</sub> = -100 mA |     |     | 30<br>-30 | mA |
| ١ <sub>L</sub>            | Latching current         | V <sub>supply</sub> = +12 V†<br>V <sub>supply</sub> = -12 V† | (see Note 7)            |                                                                   |     |     | 40<br>-40 | mA |

† All voltages are with respect to Main Terminal 1.


NOTES: 6. This parameter must be measured using pulse techniques, t<sub>p</sub> = ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

7. The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics:  $R_G = 100 \Omega$ ,  $t_{p(g)} = 20 \mu s$ ,  $t_r = \le 15 ns$ , f = 1 kHz.

#### **TYPICAL CHARACTERISTICS**



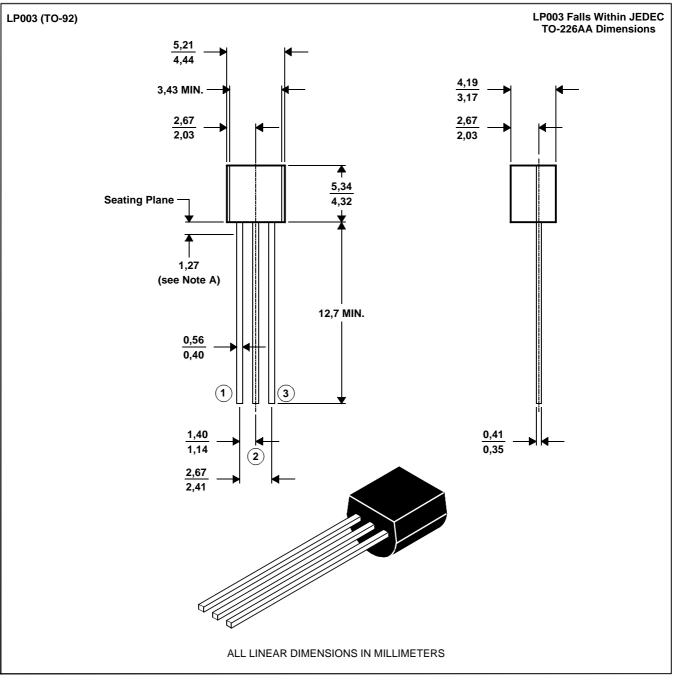
MARCH 1988 - REVISED MARCH 1997



#### **TYPICAL CHARACTERISTICS**

I<sub>L</sub> - Latching Current - mA 10 • • 1 -60 -40 -20 0 20 40 80 100 120 60 T<sub>c</sub> - Case Temperature - °C Figure 5.




MARCH 1988 - REVISED MARCH 1997

#### **MECHANICAL DATA**

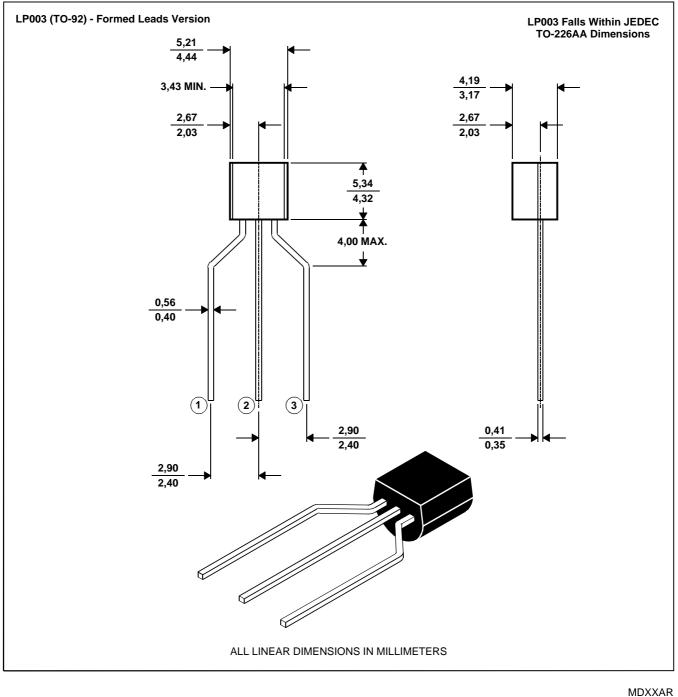
## LP003 (TO-92)

#### 3-pin cylindical plastic package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.



NOTE A: Lead dimensions are not controlled in this area.


MDXXAX

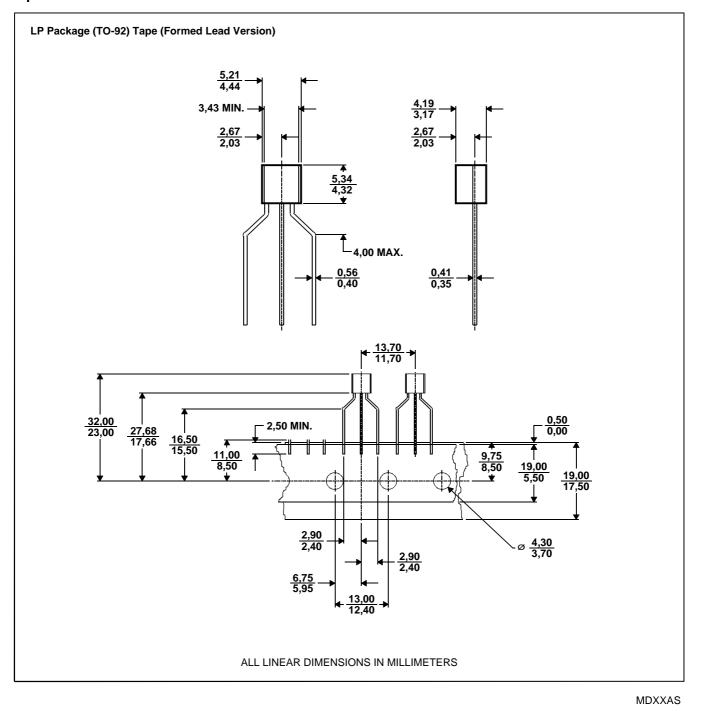
#### **MECHANICAL DATA**

#### LP003 (TO-92)

#### 3-pin cylindical plastic package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.






#### INFORMATION PRODUCT

MARCH 1988 - REVISED MARCH 1997

#### **MECHANICAL DATA**

# LPR tape dimensions



MARCH 1988 - REVISED MARCH 1997

#### **IMPORTANT NOTICE**

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited



This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.