Semiconductor Group

TLE 4202 B

Bipolar IC

Preliminary Data

SIEMENS

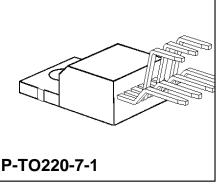
2-A DC Motor Driver

Features

- Drives motors up to 2 A
- Integrated free-wheeling diodes 2.5 A
- Short-circuit proof to ground
- Overtemperature protection
- Low saturation voltages through bootstrap
- Wide temperature range
- Suitable for applications in automotive engineering

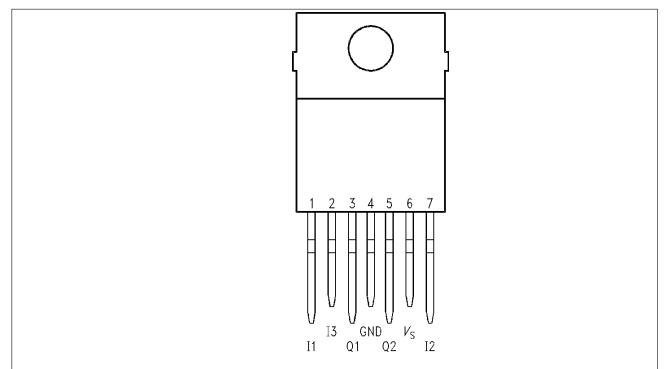
P-TO220-7-1

Г

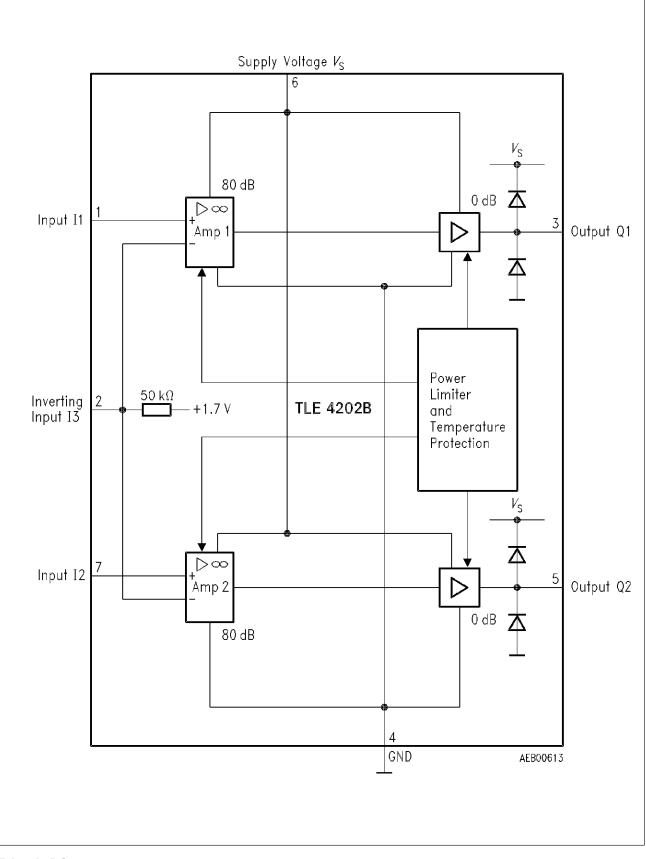

Туре	Ordering Code	Package
TLE 4202 B	Q67000-A8225	P-TO220-7-1

The two power comparators can switch magnets, motors or other loads either by being separated from each other or by being combined to a full-bridge circuit. The IC is designed for application in motor vehicles. It can be applied at package temperatures between - 40 °C and 130 °C.

The IC contains two amplifiers featuring a typical open-loop voltage gain of 80 dB at 500 Hz.


The input stages are PNP differential amplifiers thus resulting in a common-mode input voltage range from 0 V to approx. the value of $V_{\rm S}$ and in a maximum input differential voltage of $V_{\rm S}$. To obtain low saturation voltages at the sink circuit, the drive circuit of the sink transistor is connected to the supply voltage. An SOA protective circuit protects the IC against ground short-circuits. At chip temperatures above approx. 160 °C the source transistors are turned off.

1


Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	11	Input 1 Non-inverting input 1, to be connected to pin 2 and pin 3 according to general rules
2	13	Inverting input 3 Inverting inputs of the two comparators; internally connected to reference voltage across 50 k Ω (typ. 1.7 V)
3	Q1	Output Q1 Push-pull output B DC-short-circuit proof to ground. Integrated free-wheel diodes to ground and to supply voltage
4	GND	Ground
5	Q2	Output Q2, see pin 3
6	Vs	Supply voltage Has to be blocked to ground with a ceramic capacitor of at least 100 nF directly at the pins of the ICs
7	12	Input 2 Non-inverting input 2; see pin 1

Block Diagram

Semiconductor Group

Absolute Maximum Ratings

$T_{\rm C}$ = - 40 to 130 °C

Parameter	Symbol	Lim	Unit	
		min.	max.	
Supply voltage	Vs	_	40	V
Output current of sink transistors $T_{\rm C} \le 85 ^{\circ}{\rm C}$	I _Q	_	2.5	A
Output current of source transistors internally limited Diode peak currents	I _Q	_	-	_
to + $V_{\rm S}$ to ground	I _{F +} I _{F -}		2.5 2.5	A A
Voltage at pins I1, I2, I3 Voltage at	V _{1, 2, 7}	- 0.3	V _S	V
pins Q1, Q2 ¹⁾	V _{3, 5}	-	-	V
Junction temperature Storage temperature	$T_{ m j}$ $T_{ m stg}$	- - 55	150 125	°C °C

Operating Range

Supply voltage	$V_{\sf S}$	3.5	17	V
Case temperature during operation $R_{\rm L} \ge 6 \ \Omega, \ V_{\rm S} = 7 \ \dots \ 16 \ {\rm V}$ $R_{\rm L} \ge 9 \ \Omega, \ V_{\rm S} = 16 \ {\rm V}$	T _c	- 40 -	_ 130	°C °C
Voltage amplification (at negative feedback with external connection)	V _v	30	_	dB
Thermal resistance system - case	R _{th SC}	_	4	K/W

¹⁾ The output voltages are kept within a permissible range by free-wheel diodes

Outputs Q1 and Q2 short-circuit proof to ground

 $R_{\rm L}$: Resistance between output 1 and output 2

Characteristics

 $V_{\rm S}$ = 13 V; $T_{\rm j}$ = 25 °C

Parameter	Symbol	Limit Values		Unit	Test Condition	Test	
		min.	typ.	max.			Circuit

General Data

Quiescent current Open-loop gain	$I_{ m S} \ G_{ m VO}$	- 50	15 80	25 -	mA dB	S = 1 f = 500 Hz $V_{\text{S}} \le 7 \text{ V} \le 16 \text{ V}$ $T_{\text{C}} = -40 \text{ °C to}$	1 1
						+ 110 °℃	

Input Characteristics

Input current							
(pins I1, I2)	$I_{1,7}$	-	1.0	3.0	μA	$V_{11, 12} = 0$	2
Input current	I_{12}	-	35	70	μA	$V_{12} = 0; V_{11,7} = V_{S}$	1
	$-I_{12}$	-	230	300	μA	$V_{12} \le V_{\rm S}; V_{11,7} = 0$ V	_
Input resistance	$R_{1,7}$	1	5	_	MΩ	f = 1 kHz	1
Input reference voltage	V ₁₂	1.4	1.7	2.0	V	$I_2 = 0; V_{11,7} = 0 V$	1
Input offset voltage	<i>V</i> ₁₀	- 20	_	20	mV	_	3

Characteristics (cont'd)

 $V_{\rm S}$ = 13 V; $T_{\rm j}$ = 25 °C

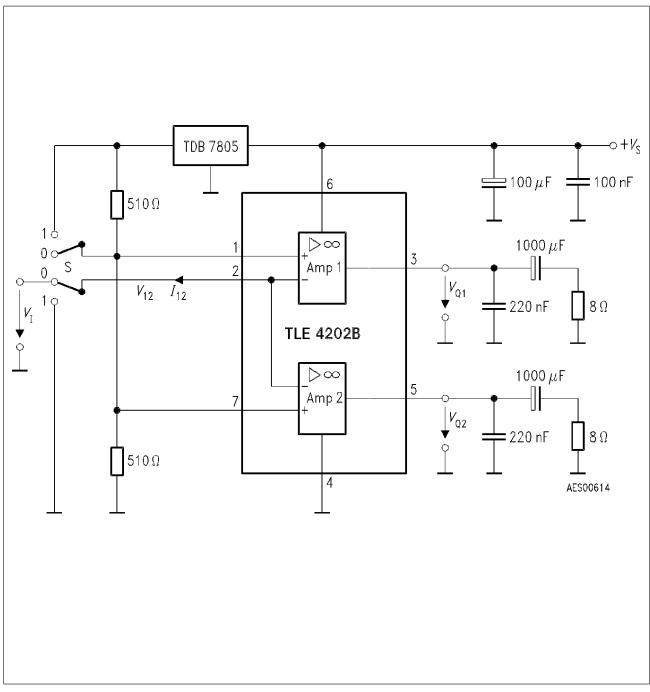
Parameter	Symbol	ol Limit Values		ues	Unit	Test Condition	Test
		min.	typ.	max.			Circuit

Output Characteristics

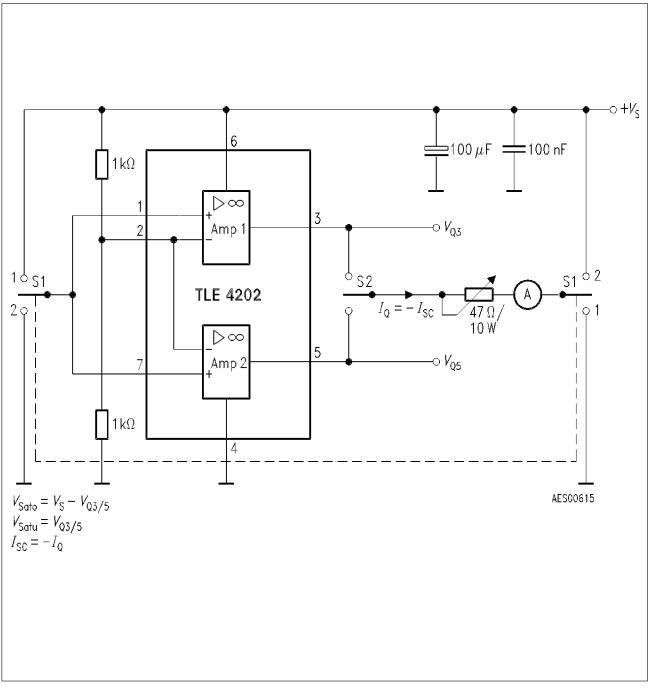
Saturation voltages							
Source operation	V_{Sato}	_	0.9	1.0	V	$I_{\rm O} = -0.3 \text{A}; \text{S1} = 1$	2
measured to $V_{\rm S}$	V_{Sato}	_	1.2	1.6	V	$I_{\rm Q}^{\circ} = -1.0 \text{ A}; \text{S1} = 1$	2
C C	V _{Sato}	-	1.5	2.1	V	$I_{Q} = -2 \text{ A}; \text{ S1} = 1$	2
Sink operation	V_{Satu}	-	0.25	0.4	V	$I_{\rm Q}$ = + 0.3 A;S1 = 2	2
			0.5	0.75	V	$I_{\rm Q}$ = + 1.0 A;S1 = 2	2
	V_{Satu}	-	1.0	1.3	V	$I_{Q} = + 2 \text{ A}; \text{ S1} = 2$	2
Short-circuit	I _{SC}	-	1.25	1.60	А	$V_{\rm Q} = 0 \ {\rm V}$	2
current							
Diode forward							
voltage to + $V_{\rm S}$	$V_{\rm F+}$	-	1.0	1.3	V	$I_{\rm F} = I_{\rm Q} = + 1 {\rm A}$	2
to ground	V_{F} –	-	0.9	1.2	V	$I_{\rm F} = I_{\rm Q} = + 1 {\rm A}$	2
Slew rate	SR	-	6	—	V/µs	-	1
falling edge							
Slew rate	SR	-	6	—	V/µs	-	1
rising edge							

Switching Times

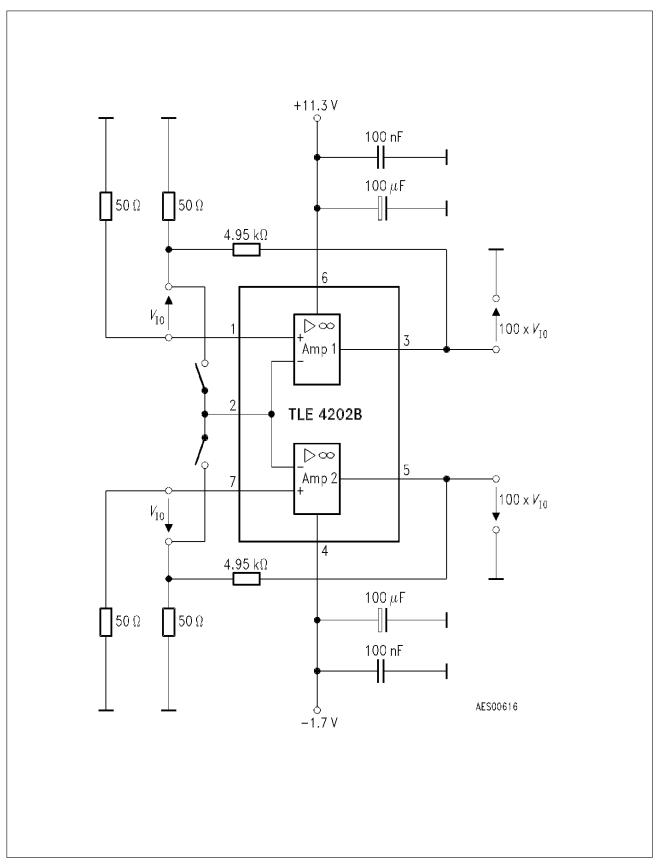
Rise time of $V_{\rm Q}$	t _r	_	1.5	_	μs	_	1
Fall time of V_{Q}	t _f	_	1.5	_	μs	_	1
Switch-ON delay	t _{ON}	_	3.0	_	μs	_	1
Switch-OFF delay	t _{OFF}	_	1.5	_	μs	_	1
Quiescent current	Is	_	15	30	mA	S = 1	1

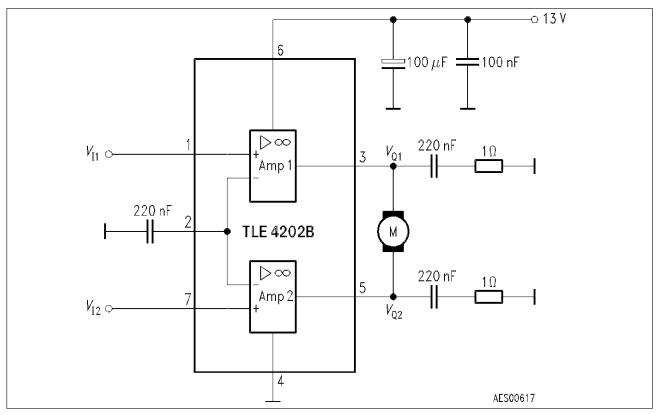

Characteristics (cont'd)

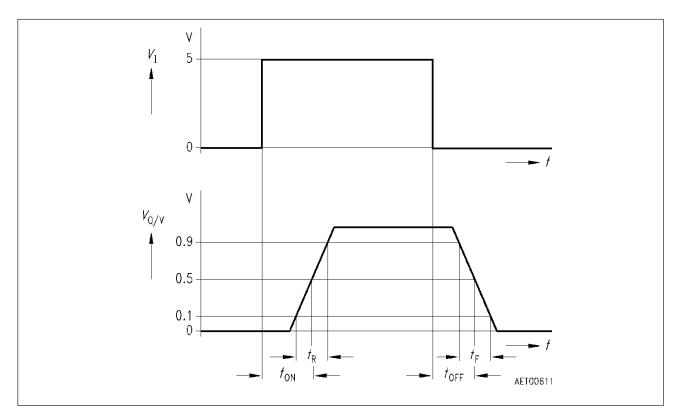
 $V_{\rm S}$ \leq 7 V to 17 V; $T_{\rm C}$ = - 40 to 110 °C


Parameter	Symbol	Limit Values			Unit	Test Condition	Test
		min.	typ.	max.			Circuit

Saturation Voltage

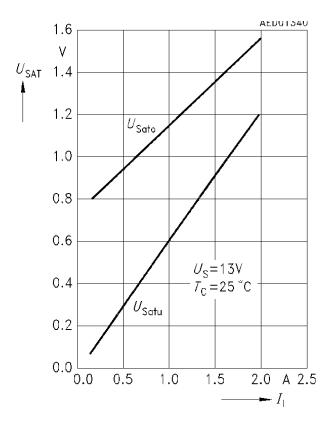

Source operation measured to $V_{\rm S}$	$V_{ m Sato}$ $V_{ m Sato}$ $V_{ m Sato}$	- - -	0.9 1.2 1.5	1.2 1.8 2.4	V V V	$I_{Q} = -0.3 \text{ A}; \text{S} = 1$ $I_{Q} = -1 \text{ A}; \text{S} = 1$ $I_{Q} = -2 \text{ A}; \text{S} = 1$	2 2 2
Sink operation	V _{Satu} V _{Satu} V _{Satu}	_ _ _	0.25 0.5 1.2	0.60 1.1 2.0	V V V	$ I_Q = 0.3 \text{ A}; S1 = 2 \\ I_Q = 1 \text{ A}; S1 = 2 \\ I_Q = 2 \text{ A}; S1 = 2 $	2 2 2
Short-circuit current	- I _{SC}	-	-	3.5	V	$V_{\rm Q} = 0 \text{ V}$ $T_{\rm C} = 25 \text{ °C to}$ 110 °C	_

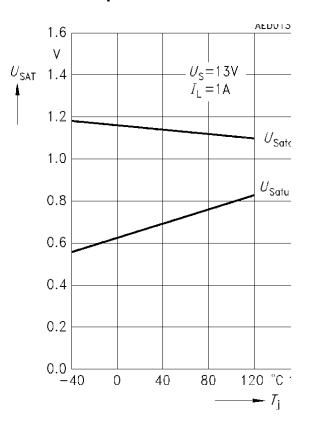




Test Circuit 3

Semiconductor Group


Application Circuit

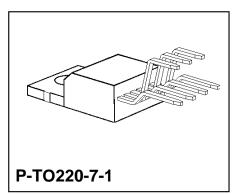

Diagrams

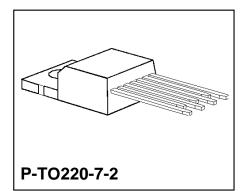
Semiconductor Group

Saturation Voltage versus Output Current

Saturation Voltage versus Temperature

4-A Motor Driver


TLE 4203


Bipolar IC

Preliminary Data

Features

- Integrated free-wheeling diodes
- Outputs short-circuit proof to V_s and ground
- Thermal overload protection
- Blocking of the output stages upon undervoltage
- Final push-pull stage free of cross-over

Туре	Ordering Code	Package
TLE 4203	Q67000-A8121	P-TO220-7-1
TLE 4203 S	Q67000-A9101	P-TO220-7-2

▼ New type

The integrated circuit TLE 4203 is a versatile double power driver of up to 4 A output current which is particularly suitable as a driver for DC motors in reversible operation.

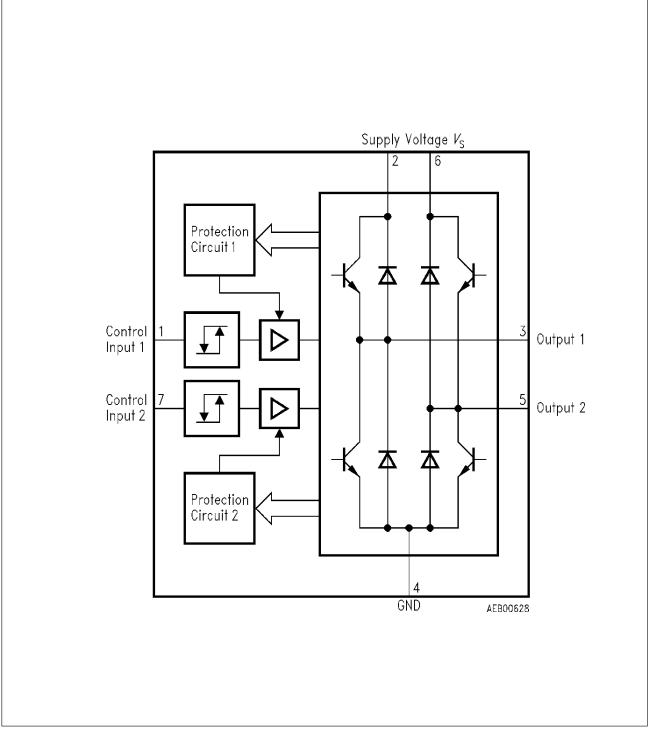
The push-pull power output stages operate in the switching mode and can be combined to a full-bridge configuration.

The drive of the input stage is implemented using digital logic.


The device contains a temperature protection logic, output stages protected against short-circuit and integrated free-wheeling diodes.

Typical applications are for follow-up control, servo drives, servo motors, drive mechanisms, etc.

1


Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	IST1	Control input for channel 1 (TTL/CMOS-compatible), of non-inverting effect on the channel output.
2	V _{S1}	Channel 1 supply voltage; externally connected with the supply voltage pin for channel 2 (pin 6).
3	Q1	Short-circuit protected push-pull C output channel 1 for currents up to 6 A. Free-wheeling diodes are integrated on chip for inductive loads.
4	GND 1, 2	Ground; track should be designed for the max. short-circuit current (2 x 6 A).
5	Q2	Short-circuit protected push-pull C output channel 2 for currents up to 6 A. Free-wheeling diodes are integrated on chip for inductive loads.
6	V _{S2}	Channel 2 supply voltage; externally connected with the supply voltage pin for channel 1 (pin 2).
7	IST2	Control input for channel 2 (TTL/CMOS-compatible), of non-inverting effect on the channel output.

Block Diagram

Application

In industrial and automotive electronics, power full-bridge DC motor drivers are mostly used for bidirectional motor drives. The two TTL and CMOS-compatible control inputs act on the output as follows:

Status	Input 1	Input 2	Output 1	Output 2
1	L	L	V_{QL}	V _{QL}
2	L	Н	V_{QL}	V _{QH}
3	Н	L	V_{QH}	V _{QL}
4	Н	Н	V_{QH}	V _{QH}

 V_{QL} means:Lower power unit conducting; upper power unit blocked.

 V_{QH} means:Upper power unit conducting; lower power unit blocked.

The following examples illustrate the operation:

Status 1: Motor is slowed down

Status 2: Motor turns right

Status 3: Motor turns left

Status 4: Motor is slowed down

Circuit Description

Input Circuit

The control inputs consist of TTL and CMOS-compatible Schmitt triggers with hysteresis. Buffer amplifiers, controlled from these stages, convert the logic signal into the form required for driving the power output stages.

Output Stages

The output stages consist of two push-pull C stages. Using protective circuits for limiting the power dissipation makes the outputs short-circuit proof to ground and to supply voltage throughout the entire operating range. Positive and negative voltage peaks, which occur when switching inductive loads, are limited by integrated power diodes.

Monitoring and Protecting Functions

The IC is protected against thermal overloads by a temperature protecting circuit.

In addition an internal circuit ensures that all output transistors are blocked for supply voltages below operating range.

A monitoring stage logic for each output stage transistor detects whether the relevant transistor is active and in this case for sink operation (source operation) prevents the corresponding source transistor (sink transistor) from being turned on. Direct cross-over currents are effectively prevented with this method.

Absolute Maximum Ratings

$T_{\rm C}$ = - 40 to 125 °C

Parameter	Symbol	Lin	nit Values	Unit
		min.	max.	
Voltages				
Supply voltage	Vs	- 0.3	45	V
Logic input voltages	V _{I 1, 2}	- 45	45	V
Currents				
Supply current $T_{\rm C} \le 85 ^{\circ}{\rm C}$	Is	- 12	12	А
Output current	<i>I</i> _{Q 1, 2}	- 6	6	A
$T_{\rm C} \le 85 \ ^{\circ}{\rm C}$ Ground current	I	- 12	12	•
$T_{\rm C} \le 85 \ ^{\circ}{\rm C}$	I _{GND}	- 12	12	A
Temperatures				
Junction temperature	T _j	_	150	°C
Storage temperature range	T_{stg}	- 50	150	°C
Thermal resistances				
system - case	R _{th SC}	-	3	K/W
system - ambient	R _{th SA}	-	65	K/W
Operating Range				
Supply voltage	Vs	5.0	20	V
Logic input voltage	V _{I 1, 2}	- 10	40	V
Case temperature	T _c	- 40	125	°C
$T_{\rm j} \leq$ 150 °C				

Characteristics

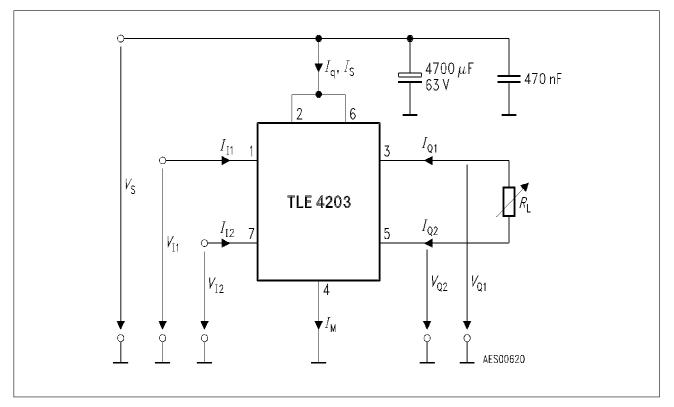
 $V_{\rm S}$ = 8 to 18 V, $T_{\rm j}$ = - 25 to 125 °C (typ. $V_{\rm S}$ = 12 V; $T_{\rm j}$ = 25 °C)

Parameter	Symbol	Liı	mit Va	lues	Unit	Test Condition
		min.	typ.	max.		

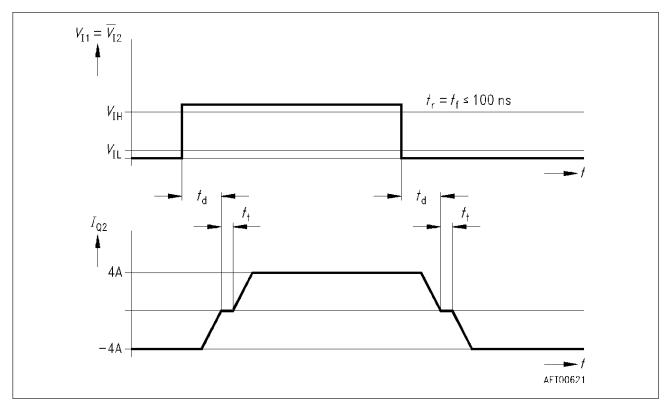
General Characteristics

Logic

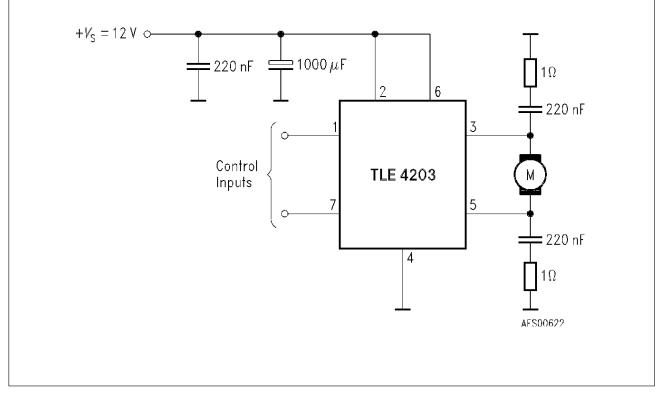
Control inputs						
H-input voltage	V_{IH}	2.8	_	_	V	_
L-input voltage	V_{IL}	-	-	1.2	V	_
Hysteresis of	$\Delta V_{\rm I}$	-	0.7	_	V	_
input voltage						
H-input current	I _{IH}	-	-	10	μA	$V_1 = 5 V$
L-input current	$-I_{\rm IL}$	-	-	10	μA	$V_{\rm I} = 0.5 {\rm V}$


$V_{\rm S}$ = 8 to 18 V, $T_{\rm C}$ = – 25 to 125 °C Switching Stages

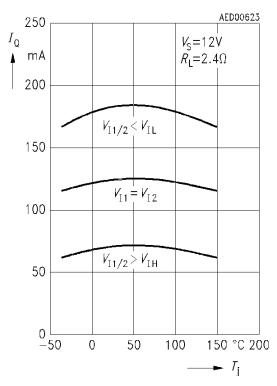
Saturation voltages						
to + $V_{\rm S}$	V_{QSato}	-	1.1	1.3	V	$V_{\rm I,1,2} > V_{\rm IH}; I_{\rm Q} = -1 {\rm A}^{1}$
to + $V_{\rm S}$	V_{QSato}	-	1.5	1.8	V	$V_{\rm I,1,2} > V_{\rm IH}; I_{\rm Q} = -2 {\rm A}^{1}$
to + $V_{\rm S}$	V_{QSato}	-	2.5	3.5	V	$V_{\rm I1,2} > V_{\rm IH}, I_{\rm Q} = -4$ A ¹⁾
to ground	V_{QSatu}	-	0.3	0.6	V	$V_{\rm I,1,2} < V_{\rm IL}; I_{\rm Q} = 1 \text{ A}$
to ground	V_{QSatu}	-	0.6	1.0	V	$V_{\rm I1,2} < V_{\rm IL}; I_{\rm Q} = 2 \text{ A}$
to ground	V_{QSatu}	-	1.6	3.2	V	$V_{\rm I1,2} < V_{\rm IL}; I_{\rm Q} = 4$ A


Forward Voltages

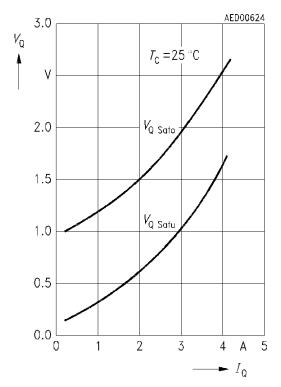
Diode to + $V_{\rm S}$	$-V_{QFo}$	_	0.95	1.3	V	$V_{11/2} > V_{1H}; I_Q = 1 A^{1}$
Diode to + $V_{\rm S}$	$-V_{QFo}$	_	1.05	1.5	V	$V_{\rm I1/2} > V_{\rm IH}; I_{\rm Q} = 2 {\rm A}^{1}$
Diode of + V_{S}	$-V_{QFo}$	-	1.30	1.8	V	$V_{\rm I1/2} > V_{\rm IH}; I_{\rm Q} = 4 {\rm A}^{1}$
Diode to ground	$-V_{QFu}$	-	0.95	1.3	V	$V_{\rm II/2} < V_{\rm IL}; I_{\rm Q} = -1$ A
Diode to ground	$-V_{QFu}$	-	1.00	1.5	V	$V_{\rm I1/2} < V_{\rm IL}; I_{\rm Q} = -2$ A
Diode to ground	$-V_{ m QFu}$	-	1.20	1.8	V	$V_{\rm I1/2} < V_{\rm IL}; I_{\rm Q} = -4$ A


¹⁾ measured to + $V_{\rm S}$

Test Circuit

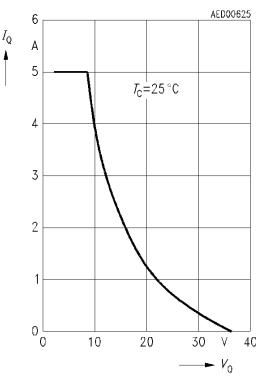


Timing Diagram

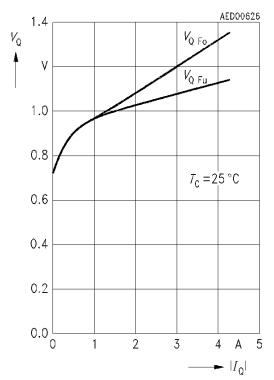


Application Circuit

Saturation Voltage versus Output Current

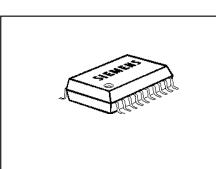


Saturation Voltage versus Output Current



Short-Circuit Current versus Output Voltage

 $V_{\rm A} = V_{\rm Q}$ for sink operation $V_{\rm A} = V_{\rm S} - V_{\rm Q}$ for source operation


Diode Forward Voltage versus Output Current

Motor Driver

Features

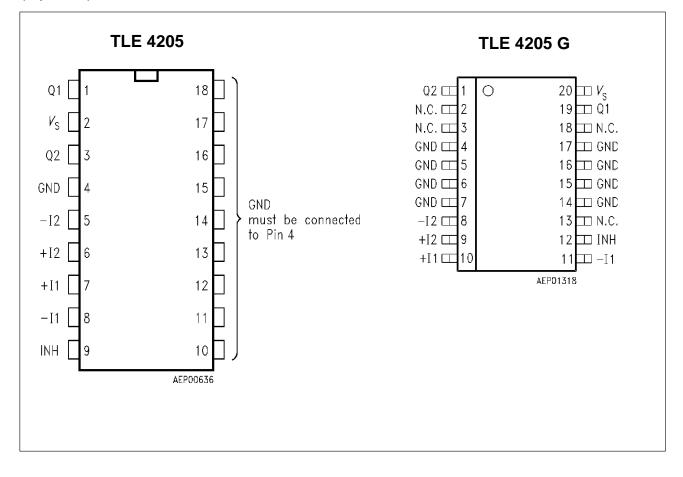
- Max. driver current 1 A
- Integrated free-wheeling diodes
- Short-circuit proof to ground
- Inhibit
- ESD protected inputs
- Temperature range 40 °C $\leq T_i \leq$ 150 °C

P-DSO-20-6

P-DIP-18-1

Туре	Ordering Code	Package
TLE 4205	Q67000-A9025	P-DIP-18-1
7 TLE 4205 G	Q67000-A9114	P-DSO-20-6 (SMD)

▼ New type

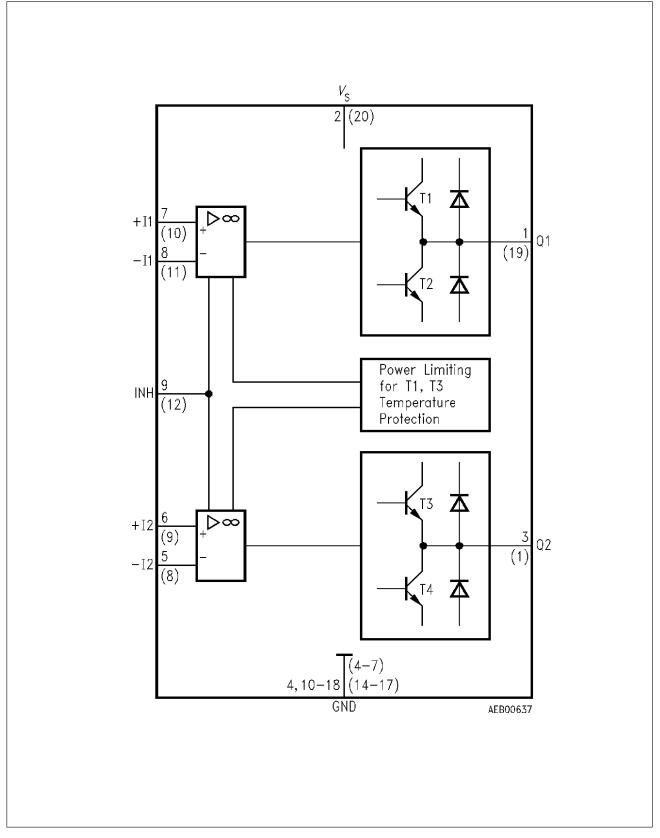

TLE 4205 is an integrated power full-bridge DC-motor driver for a wide temperature range, as required in automotive applications for example. The circuit contains two power comparators that can be combined to a full-bridge circuit. For inductive loads there are integrated free-wheeling diodes to + $V_{\rm S}$ and ground. The outputs are short-circuit proof from 18 V to ground and turn-OFF when overtemperature occurs. This IC is especially suitable for headlight-beam adjustment in automobiles.

TLE 4205

Bipolar IC

Pin Configuration

(top view)

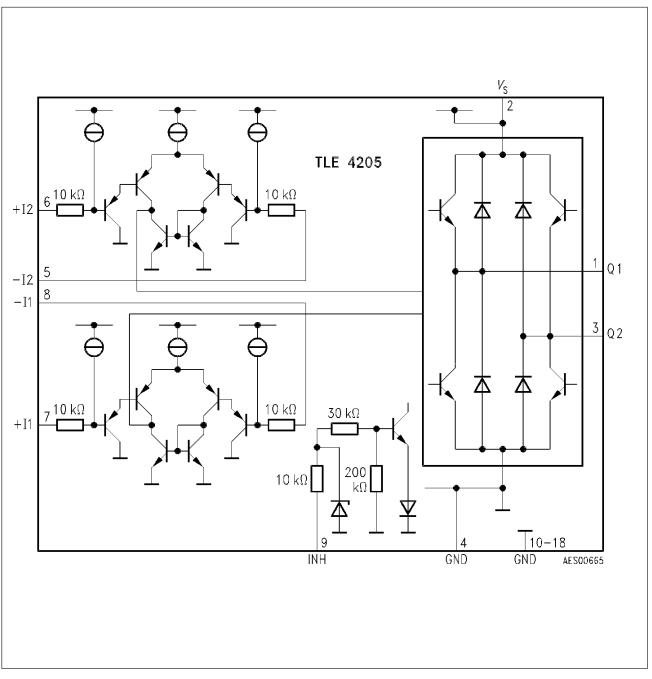


Pin Definitions and Functions (TLE 4205)

Pin	Symbol	Function
1	Q1	Output Q1 of channel 1; push-pull B output with DC short- circuit protection to ground. Integrated free-wheeling diodes to ground and the supply voltage.
2	Vs	Supply voltage V_s ; must be blocked to ground with a ceramic capacitor of at least 100 nF directly on the pins of the IC.
3	Q2	Output Q2 of channel 2; see pin 1.
4	GND	Ground
5	- 12	Inverting input channel 2 ; to be wired according to general rules.
6	+ 12	Non-inverting input channel 2; to be wired according to general rules.
7	+ 11	Non-inverting input channel 1; see pin 6.
8	– I1	Inverting input channel 1; see pin 5.
9	INH	Inhibit; the IC is passive when this pin is open or connected to ground.
10-18	GND	Ground; must be connected to pin 4.

Pin Definitions and Functions (TLE 4205 G)

Pin	Symbol	Function
1	Q2	Output 2 of channel 2 ; push-pull B output with DC short-circuit protection to ground. Integrated free-wheeling diodes to ground and the supply voltage.
2	N.C.	Not connected
3	N.C.	Not connected
4-7	GND	Ground
8	- 12	Inverting input channel 2; to be wired according to general rules.
9	+ 12	Non-inverting input channel 2; to be wired according to general rules.
10	+ 11	Non-inverting input channel 1; see pin 6.
11	- I1	Inverting input channel 1; see pin 5.
12	INH	Inhibit; the IC is passive when this pin is open or connected to ground.
13	N.C.	Not connected
14-17	GND	Ground
18	N.C.	Not connected
19	Q1	Output Q1; must be connected to pin 4.
20	Vs	Supply voltage; must be connected to pin 4.



Block Diagram

Circuit Description

The IC contains two amplifiers with typical open-loop gain of 80 dB at 500 Hz.

The input stages consist of PNP-differential amplifiers. This produces a common-mode input range of 0 V to nearly $V_{\rm S}$ and a maximum differential input voltage of $V_{\rm S}$. The IC is guarded against ground shorts by an SOA-protective circuit. The output transistors are turned off if the chip temperature exceeds approx. 160 °C. The IC can be turned off by an inhibit input, which very much reduces current consumption.

Circuit Diagram

Absolute Maximum Ratings $T_{\rm j}$ = - 40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	Vs	- 0.3	45	V	
Differential input voltage	V _{ID}		± V _S	V	$\Delta V_{6-5} \text{ or } \Delta V_{7-8}$ TLE 4205 $\Delta V_{8-9} \text{ or } \Delta V_{10-11}$ TLE 4205 G
Output current	IQ	- 1	1	A	
Supply current	Is	2.5	3	A	
Ground current	I _{GND}	- 3	2.5	А	12
Input voltage		- 15	+ V _S	V	V ₅ ; V ₆ ; V ₇ ; V ₈ TLE 4205 V ₈ ; V ₉ ; V ₁₀ ; V ₁₁ TLE 4205 G
Inhibit input	V ₉	- 15	+ V _S	V	
Junction temperature	T _j		150	°C	
Storage temperature	$T_{ m stg}$	- 50	150	°C	

Operating Range

Supply voltage	Vs	6	32	V	
Case temperature	T _C	- 40	105	°C	$P_{\text{Dmax}} = 3 \text{ W}$
Thermal resistance junction - ambient junction - case	$R_{ m th~JA} \ R_{ m th~JC}$		60 15	K/W K/W	TLE 4205 TLE 4205
Thermal resistance junction - ambient junction - case	$R_{ m th~JA} R_{ m th~JC}$		65 3	K/W K/W	TLE 4205 G TLE 4205 G

Outputs pin 1 and pin 3 short-circuit proof to GND at $V_{\rm S}\,{\leq}\,$ 18 V

Characteristics

 $V_{\rm S}$ = 13.5 V; $T_{\rm j}$ = 25 °C

Parameter	Symbol	Limit Values		les	Unit	Test Condition
		min.	typ.	max.		

General

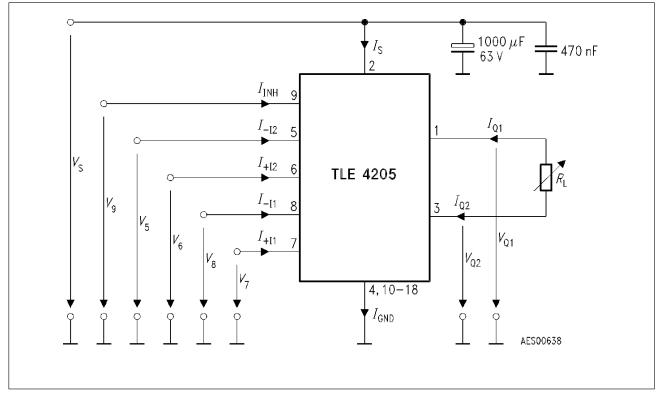
Open-circuit current consumption	Is		10	30	mA	active
Open-circuit current consumption	Is		10	100	μA	inhibit
Turn-ON dead time ref. to $V_{9 \text{ OFF/ON}}$	t _{d ON}		10	20	μs	$ I_{1,3} < 1$ A TLE 4205 $ I_{1,19} < 1$ A TLE 4205 G
Turn-OFF dead time ref. to $V_{9 \text{ OFF/ON}}$	t _{d OFF}		10	20	μs	$ I_{1,3} < 1 \text{ A}$ TLE 4205 $ I_{1,19} < 1 \text{ A}$ TLE 4205 G
Open-loop gain	$G_{\sf VO}$	50	80		dB	<i>f</i> = 500 Hz

Inputs

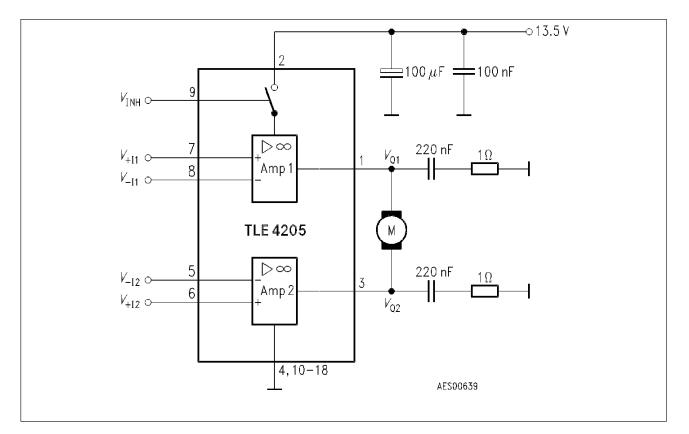
Input zero voltage	V_{IO}	- 7.5		7.5	mV	$R_{\rm S}$ = 10 kΩ; - 40 °C ≤ $T_{\rm j}$ ≤ 85 °C
Input-voltage drift	$\Delta V_{\rm IO}/\Delta T$		20	30	μV/K	$-40 \ ^{\circ}\text{C} \le T_{j} \le 85 \ ^{\circ}\text{C}$
Input zero current	I _{IO}	- 75		75	mA	$-40 \ ^{\circ}\text{C} \le T_{j} \le 85 \ ^{\circ}\text{C}$
Input current	I	- 300		300	nA	$-40 \ ^{\circ}\text{C} \le T_{j} \le 85 \ ^{\circ}\text{C}$
Input-current drift	$\Delta I_{\rm I}/\Delta T$			5	nA/K	$-40 \ ^{\circ}\text{C} \le T_{j} \le 85 \ ^{\circ}\text{C}$
Input common-mode range, positive	V _{IC}			V _S – 2	V	
Input common-mode range, negative	V _{IC}			- 0.5	V	

Characteristics (cont'd) $V_{\rm S}$ = 13.5 V; $T_{\rm j}$ = 25 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Power-supply rejection ratio	PSSR			200	μV/V	$R_{ m S}$ = 10 k Ω ; - 40 °C \leq $T_{ m j} \leq$ 85 °C
Common-mode rejection ratio	CMRR	70	80		dB	

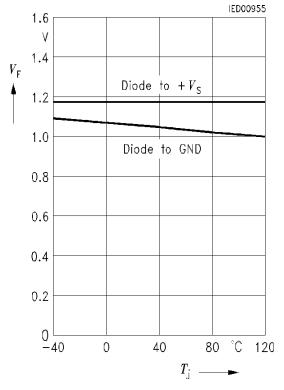

Outputs

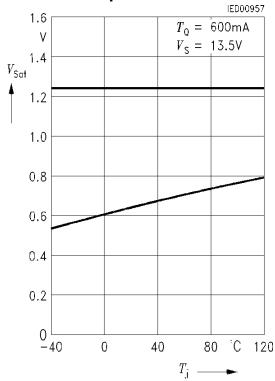
Saturation voltage	V_{Satu}	1.0	1.5	V	$I_{\rm Q} = 0.6 \text{ A};$ - 40 °C $\leq T_{\rm j} \leq 85$ °C
Saturation voltage	$V_{ m Sat1}$	1.0	1.5	V	$I_{\rm Q} = 0.6 \text{ A};$ - 40 °C $\leq T_{\rm j} \leq 85 $ °C
Forward voltage of free-wheeling diode	V_{Fu}	1.0	1.5	V	$I_{\rm Q} = 0.6 \text{ A};$ - 40 °C $\leq T_{\rm j} \leq 85 $ °C
Forward voltage of free-wheeling diode	V _{F1}	1.0	1.5	V	$I_{\rm Q} = 0.6 \text{ A};$ - 40 °C $\leq T_{\rm j} \leq 85$ °C
Slew rate of $V_{\rm Q}$	$\mathrm{d}V_{\mathrm{q}}\mathrm{d}t_{\mathrm{r}}$	0.5		V/µs	

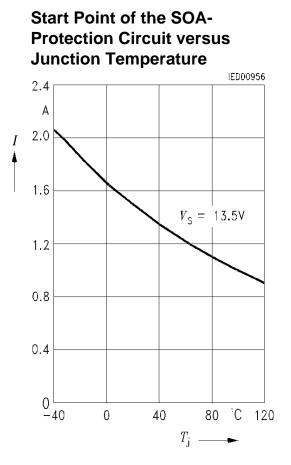

Inhibit Input

Switching threshold high	V_{IH}	2			V	
Switching threshold low	V_{IL}			0.8	V	
H-input current	I _{IH}		100		μA	V ₉ = 5 V
L-input current	I _{IH}		0		μA	$V_9 = 0 V$

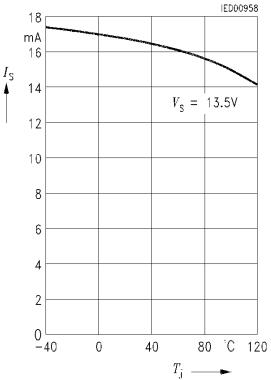
TLE 4205


Test Circuit


Application Circuit


Semiconductor Group

Forward Voltage of the Free-Wheeling Diodes versus Junction Temperature



Saturation Voltage versus Junction Temperature

Current Consumption versus Junction Temperature

